Plant Systematics and Evolution

, Volume 275, Issue 3–4, pp 181–191 | Cite as

Loss of genetic diversity in isolated populations of an alpine endemic Pilosellaalpicola subsp. ullepitschii: effect of long-term vicariance or long-distance dispersal?

Original Article

Abstract

Pilosellaalpicola subsp. ullepitschii (Asteraceae) is a strictly allogamous, diploid Carpathian endemic. Its distribution range comprises two areas separated by about 600 km. While in the Western Carpathians (Slovakia and Poland) the taxon occurs in numerous sites, only four localities of man-made origin are known from the Eastern and Southern Carpathians (Romania). We used allozyme markers to test two likely possible scenarios for the origin of this disjunction: long distance dispersal and vicariance. Our data indicate a significant loss of genetic diversity in the isolated Eastern and Southern Carpathian populations in following genetic parameters (averaged per region): percentage of polymorphic loci (38.9% found in the Eastern and Southern Carpathians versus 58.3% in the Western Carpathians), allelic richness (1.4 vs. 1.6), expected heterozygosity (0.134 vs. 0.235), mean number of distinguishable multilocus genotypes (4.3 vs. 10.6) and proportion of distinguishable multilocus genotypes (0.34 vs. 0.68). Higher proportion of homozygous loci found in the Eastern and Southern Carpathian populations might indicate a higher rate of inbreeding due to non-random mating. We assume that these genetically depauperate populations have experienced a very strong genetic bottleneck, probably due to a founder effect. Although our data suggest that the long-distance dispersal model is most likely, more discriminate genetic markers should be used to test this further.

Keywords

Allozymes Asteraceae Carpathians Bottleneck Disjunction Founder effect Hieracium Pilosella alpicola subsp. ullepitschii 

References

  1. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge, p 447Google Scholar
  2. Barrett SCH, Kohn JR (1991) Genetic and evolutionary consequences of small population size in plants: implications for conservation. In: Falk DA, Holsinger HE (eds) The genetics and conservation of rare plants. Oxford University Press, Oxford, pp 3–30Google Scholar
  3. Beldie A (1940) Observatiuni asupra vegetatiei lemnoase din Muntii Bucegi. Analele ICAS 6:261–271Google Scholar
  4. Bräutigam S (1992) Hieracium L. In: Meusel H, Jäger EJ (eds) Vergleichende Chorologie der zentraleuropäischen Flora 3. Gustav Fischer Verlag, Jena, pp 332–558Google Scholar
  5. Bruun HH, Scheepens JF, Tyler T (2007) An allozyme study of sexual and vegetative regeneration in Hieracium pilosella L. Canad J Bot 85:10–15CrossRefGoogle Scholar
  6. Busch JW (2005) The evolution of self-compatibility in geographically peripheral populations of Leavenworthia alabamica (Brassicaceae). Amer J Bot 92:1503–1512CrossRefGoogle Scholar
  7. Cain ML, Milligan BG, Strand AE (2000) Long-distance seed dispersal in plant populations. Amer J Bot 87:1217–1227CrossRefGoogle Scholar
  8. Campbell DH (1942) Continental drift and plant distribution. Science 95:69–70PubMedCrossRefGoogle Scholar
  9. Campbell LG, Husband BC (2005) Impact of clonal growth on effective population size in Hymenoxys herbacea (Asteraceae). Heredity 94:526–532PubMedCrossRefGoogle Scholar
  10. Charlesworth B, Charlesworth D, Morgan MT (1990) Genetic loads and estimate of mutation rates in highly inbred plant populations. Nature 347:380–382CrossRefGoogle Scholar
  11. Charlesworth D, Pannell JR (2001) Mating systems and population genetic structure in the light of coalescent theory. In: Silvertown J, Antonovics J (eds) Integrating ecology and evolution in a spatial context. Blackwell Science, Oxford, pp 73–95Google Scholar
  12. Ciocârlan V, Costea M (1997) Completǎri la flora României. Stud Cercet Biol (Cluj) 49:91–95Google Scholar
  13. Comes HP, Kadereit JW (1998) The effect of quaternary climatic changes on plant distribution and evolution. Trends Pl Sci 3:432–438CrossRefGoogle Scholar
  14. Cox CB, Moore PD (2005) Biogeography. An ecological and evolutionary approach, 7th edn. Blackwell, Oxford, p 428Google Scholar
  15. Crow JF, Aoki K (1984) Group selection for a polygenic behavioural trait: estimating the degree of population subdivision. Proc Natl Acad USA 81:6073–6077CrossRefGoogle Scholar
  16. DeQueiroz A (2005) The resurrection of oceanic dispersal in historical biogeography. Trends Ecol Evol 20:68–73CrossRefGoogle Scholar
  17. Ehrendorfer F (1976) Genus Galium L. sect. Leptogalium Lange. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Weeb DA (eds) Flora Europaea, vol 4. Cambridge University Press, Cambridge, pp 29–34Google Scholar
  18. Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implication for plant conservation. Annual Rev Ecol Syst 24:217–242CrossRefGoogle Scholar
  19. Elton ChS (1958) The ecology of invasions by animals and plants. Methuen, LondonGoogle Scholar
  20. Goudet J (1995) FSTAT: a computer program to calculate F-statistics (version 2.9.3). J Heredity 86:485–486Google Scholar
  21. Hamrick JLM, Godt JW (1989) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Wier BS (eds) Plant population genetics. Sinauer, Sunderland, pp 43–63Google Scholar
  22. Heywood VH (1989) Patterns, extents and modes of invasions by terrestrial plants. In: Drake JA, Mooney HA, Di Castri F, Groves RH, Kruger FJ, Rejmánek M, Williamson W (eds) Biological invasions: a global perspective. Wiley, Chichester, pp 31–60Google Scholar
  23. Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276Google Scholar
  24. Hewitt GM (2000) The genetic legacy of the quaternary ice ages. Nature 405:907–913PubMedCrossRefGoogle Scholar
  25. Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet 6:13. v. 3.15, http://ibdws.sdsu.edu/
  26. Kapralov MV, Gabrielsen TM, Sarapultsev IE, Brochmann Ch (2006) Genetic enrichment of the arctic clonal plant Saxifraga cernua at its southern periphery via the alpine sexual Saxifraga sibirica. Molec Ecol 15:3401–3411CrossRefGoogle Scholar
  27. Kashin AS, Anfalov VE, Demochko YuA (2005) Studying allozyme variation in sexual and apomictic Taraxacum and Pilosella (Asteraceae) populations. Russ J Genet 41:144–154CrossRefGoogle Scholar
  28. Kato T (1987) Hybridization between Dianthus superbus var longicalicinus and D. shinanensis evidenced by resolvable esterase isozymes from herbarium specimens. Ann Tsukuba Bot Gard 6:9–18Google Scholar
  29. Krahulec F, Krahulcová A, Fehrer J, Bräutigam S, Plačková I, Chrtek J Jr (2004) The Sudetic group of Hieracium subgen. Pilosella from the Krkonoše Mts: a sythetic view. Preslia 76:223–243Google Scholar
  30. Kropf M, Kadereit JW, Comes HP (2003) Differential cycles of range contraction and expansion in European high mountain plants during the Late Quaternary: insights from Pritzelago alpina (L.) O. Kuntze (Brassicaceae). Molec Ecol 12:931–949CrossRefGoogle Scholar
  31. Kropf M, Comes HP, Kadereit JW (2006) Long-distance dispersal vs vicariance: the origin and genetic diversity of alpine plants in the Spanish Sierra Nevada. New Phytol 172:169–184PubMedCrossRefGoogle Scholar
  32. Leberg PL (1992) Effects of population bottlenecks on genetic diversity as measured by allozyme electrophoresis. Evolution 46:477–494CrossRefGoogle Scholar
  33. Lomolino MV, Riddle BR, Brown JH (2005) Biogeography, 3rd edn. Sinauer Associates, SunderlandGoogle Scholar
  34. Mirek Z, Piękoś-Mirkowa H (1984) Distribution and habitats of Galium saxatile L. in the Carpathians. Acta Soc Bot Pol 53:419–427Google Scholar
  35. Murawski DA, Hamrick JL (1990) Local genetic and clonal structure in the tropical terrestrial bromeliad, Aechmea magdalenae. Amer J Bot 77:1201–1208CrossRefGoogle Scholar
  36. Nei M (1975) Molecular population genetics and evolution. North-Holland, AmsterdamGoogle Scholar
  37. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590PubMedGoogle Scholar
  38. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  39. Peckert T, Chrtek J Jr, Plačková I (2005) Genetic variation in agamospermous populations of Hieracium echioides in southern Slovakia and northern Hungary (Danube Basin). Preslia 77:307–315Google Scholar
  40. Piękoś-Mirkowa H, Mirek Z (1978) O rzadkich lub dotychczas z obszaru Tatr nie znanych gatunkach roślin naczyniowych. Fragm Flor Geobot 24:363–368Google Scholar
  41. Piñeiro R, Fuertes Aguilar J, Munt DD, Nieto Feliner G (2007) Ecology matters: Atlantic-mediterranean disjunction in the sand-dune shrub Armeria pungens (Plumbaginaceae). Molec Ecol 16:2155–2171CrossRefGoogle Scholar
  42. R Development Core Team (2006) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  43. Raven PH (1972) Plant species disjunctions: a summary. Ann Missouri Bot Gard 59:234–246CrossRefGoogle Scholar
  44. Raven PH, Axelrod DL (1974) Angiosperm biogeography and past continental movements. Ann Missouri Bot Gard 61:539–673CrossRefGoogle Scholar
  45. Ridley HN (1930) The dispersal of plants throughout the world. L. Reeve & Co. Ltd., AshfordGoogle Scholar
  46. Sanmartín I, Enghoff H, Ronquist F (2001) Patterns of animal dispersal, vicariance and diversification in the Holarctic. Biol J Linn Soc 73:345–390CrossRefGoogle Scholar
  47. Schaal BA, Leverich WJ (1996) Molecular variation in isolated plant populations. Pl Spec Biol 11(1):33–40CrossRefGoogle Scholar
  48. Selander RK (1983) Evolutionary consequences of inbreeding. In: Schonewald-Cox CM, Chambers SM, MacBryde B, Thomas WL (eds) Genetics and conservation. Benjamin/Cummings, San Francisco, pp 201–215Google Scholar
  49. Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47:264–279CrossRefGoogle Scholar
  50. Stehlik I (2000) Nunataks and peripheral refugia for alpine plants during quaternary glaciation in the middle part of the Alps. Bot Helv 110:25–30Google Scholar
  51. Stehlik I (2003) Resistance or emigration? Response of alpine plants to the ice ages. Taxon 52:499–510CrossRefGoogle Scholar
  52. Thompson JD (1999) Population differentiation in Mediterranean plants: insights into colonization history and the evolution and conservation of endemic species. Heredity 82:229–236PubMedCrossRefGoogle Scholar
  53. Tyler T (2005) Patterns of allozyme variation in Nordic Pilosella. Pl Syst Evol 250:133–145CrossRefGoogle Scholar
  54. Vallejos CE (1983) Enzyme activity staining. In: Tanksley SD, Orton TJ (eds) Isozymes in plant genetics and breeding, part A. Elsevier, Amsterdam, pp 469–516Google Scholar
  55. Weir BS (1990) Genetic data analysis. Sinauer Associates, SunderlandGoogle Scholar
  56. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  57. Wendel NF, Weeden JF (1989) Genetics of plant isozymes. In: Soltis DE, Soltis PS (eds) Isozymes in plant biology. Dioscorides Press, Portland, pp 5–45Google Scholar
  58. Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–126PubMedGoogle Scholar
  59. Wright S (1965) The interpretation of population structure by F-statistics with special regard to mating systems. Evolution 19:395–420CrossRefGoogle Scholar
  60. Yeh FC, Yang R-C, Boyle T (1999) POPGENE version 1.32. Microsoft Window-based freeware for population genetic analysis. http://www.ualberta.ca/~fyeh/
  61. Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418CrossRefGoogle Scholar
  62. Zahn KH (1922–1930) Hieracium. In: Ascherson P, Graebner P (eds) Synopsis der mitteleuropäischen Flora 12 (1). Gebrüder Borntraeger, LeipzigGoogle Scholar
  63. Záhradníková K, Šípošová H (1982) Výskyt Galium saxatile L. na Slovensku. Biologia (Bratislava) 37:929–932Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institute of BotanySlovak Academy of SciencesBratislavaSlovakia
  2. 2.Institute of BotanyAcademy of Sciences of the Czech RepublicPrůhoniceCzech Republic
  3. 3.Department of BotanyCharles UniversityPrahaCzech Republic
  4. 4.Département de Biologie, Unité d`Ecologie & EvolutionUniversité de FribourgFribourgSwitzerland

Personalised recommendations