Plant Systematics and Evolution

, Volume 272, Issue 1–4, pp 11–22 | Cite as

Auto-pollination in a long-spurred endemic orchid (Jumellea stenophylla) on Reunion Island (Mascarene Archipelago, Indian Ocean)

  • C. MicheneauEmail author
  • J. Fournel
  • A. Gauvin-Bialecki
  • T. Pailler


Since Darwin, long-spurred angraecoid orchids have been known for their fascinating evolutionary relationship with long-tongued hawkmoths (Sphingidae) on Madagascar. We studied the reproductive biology of the long-spurred endemic Jumellea stenophylla on Reunion. Despite the species exhibits flowers with the typical sphingophilous pollination syndrome (i.e. spur length averaged 137.9 mm, mean nectar volume was 6.1 µl, and nectar concentration was 10.7% sugar in sucrose equivalent), it does not require pollinators to achieve fruits. Compared with other hawkmoth-pollinated orchids, flower longevity was very short, lasting less than 5 days, and the species did not emit the characteristic strong and sweet scent at dusk. Fruit set ranged from 66.7 to 83.9% when pollinators were excluded, and 56–77.5% under natural conditions. Auto-pollination is a consequence of structural modifications. On Reunion, such breeding system is not rare within long-spurred species, and seems linked to the absence of specific pollinator during island colonization, and species establishment.


Jumellea stenophylla long-spurred angraecoid orchid oceanic island Reunion Island auto-pollination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams RP (2001). Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy. Allured Publishing Corporation, Carol Stream Google Scholar
  2. Anderson GJ, Bernardello G, Stuessy TF and Crawford DJ (2001). Breeding system and pollination of selected plants endemic to Juan Fernández Islands. Amer J Bot 88: 220–233 CrossRefGoogle Scholar
  3. Anderson SH (2003). The relative importance of birds and insects as pollinators of the New Zeland flora. New Zealand J Ecol 27: 83–94 Google Scholar
  4. Arctander S (1994) Perfume and flavor chemicals (Aroma chemicals), vol 1. reprint. Allured Publishing Corporation, Carol StreamGoogle Scholar
  5. Baker HG (1955). Self-compatibility and establishment after “long-distance” dispersal. Evolution 9: 347–348 CrossRefGoogle Scholar
  6. Baker HG (1967). Support for Baker’s law – as a rule. Evolution 21: 853–856 CrossRefGoogle Scholar
  7. Barrett SCH (1985). Floral trimorphism and monomorphism in continental and island populations of Eichhornia paniculata (Speng.) Solms. (Ponteriaceae). Biol J Linn Soc Lond 25: 41–60 CrossRefGoogle Scholar
  8. Barrett SCH (1996). The reproductive biology and genetics of island plants. Philos Trans Roy Soc Lond B 351: 725–733 CrossRefGoogle Scholar
  9. Bernardello G, Aguilar R and Anderson GJ (2004). The reproductive biology of Sophora fernandeziana (Leguminosae), a vulnerable endemic species from Isla Robinson Crusoe. Amer J Bot 91: 198–206 CrossRefGoogle Scholar
  10. Bernardello G, Anderson GJ, Stuessy TF and Crawford D (2001). A survey of floral traits, breeding systems, floral visitors, and pollination systems of the angiosperms of the Juan Fernandez Islands (Chile). Bot Rev 67: 255–308 CrossRefGoogle Scholar
  11. Bosser J (1988). Contribution à l’étude des Orchidaceae de Madagascar et des Mascareignes. XXIII. Adansonia 1: 19–24 Google Scholar
  12. Carlquist S (1974). Island biology. Columbia University Press, New York Google Scholar
  13. Catling PM (1980). Rain-assisted autogamy in Liparis loeselii (L.) L. C. Rich. (Orchidaceae). Bull Torrey Bot Club 107: 525–529 CrossRefGoogle Scholar
  14. Catling PM (1990). Auto-pollination in the Orchidaceae. In: Arditti, J (eds) Orchid biology, reviews and perspectives, vol V, reprint. pp. Timber Press, Portland Google Scholar
  15. Chase MW, Cameron K, Barrett RL and Freudenstein JV (2003). DNA data and Orchidaceae systematics: a new phylogenetic classification. In: Dixon, KW, Barrett, RL, and Cribb, P (eds) Orchid conservation. Natural History Publication (Borneo), pp 69–89. Kota Kinabalu, Sabah Google Scholar
  16. Darwin C (1862). On the various contrivances by which British and foreign orchids are fertilised by insects and on the good effect of intercrossing. John Murray, London Google Scholar
  17. Cordemoy EJ (1895). Flore de l’île de La Réunion. Klincksieck, Paris Google Scholar
  18. Cordemoy EJ (1899). Révision des Orchidées de la Réunion. Rev Gen Bot 11: 409–429 Google Scholar
  19. Dressler RL (1981). The orchids, natural history and classification. Harvard University Press, Cambridge Google Scholar
  20. Dressler RL (1993). Phylogeny and classification of the orchid family. Dioscorides, Portland Google Scholar
  21. du Petit-Thouars AA (1822). Histoire Particulière des Plantes Orchidées recueillies sur les trois îles australes d’Afrique. L’auteur, Arthus Bertrand, Treuttel & Würtz, Paris Google Scholar
  22. Dupont YL, Hansen DM, Rasmussen JT and Olesen JM (2004). Evolutionary changes in nectar sugar composition associated with switches between bird and insect pollination: the Canarian bird-flower element revisited. Funct Ecol 18: 670–676 CrossRefGoogle Scholar
  23. Feinsinger P, Wolfe JA and Swarm LA (1982). Island ecology: reduced hummingbird diversity and the pollination biology of plants, Trinidad and Tobago, West Indies. Ecology 63: 494–506 CrossRefGoogle Scholar
  24. Iacus SM, Urbanek S (2005) R Cocoa GUI 1 10. © R Foundation for Statistical ComputingGoogle Scholar
  25. Jacquemyn H, Micheneau C, Roberts DL and Pailler T (2005). Elevation gradients of species diversity, breeding system and floral traits of orchid species on Réunion Island. J Biogeogr 32: 1751–1761 CrossRefGoogle Scholar
  26. Kaiser R (1993). The scent of orchids: olfactory and chemical investigations. Editiones Roche, Basel Google Scholar
  27. Ke-Wei L, Zhong-Jian L, Lai-Qiang H, Li-Qiang L, Li-Jun C and Guang-Da T (2006). Pollination self-fertilization strategy in an orchid. Nature 441: 945–946 CrossRefGoogle Scholar
  28. Koopowitz H and Marchant TA (1998). Postpollination nectar reabsorption in the African epiphyte Aerangis verdickii (Orchidaceae). Amer J Bot 85: 508–512 CrossRefGoogle Scholar
  29. Kovats E (1965). Gas chromatographic characterization of organic substances in the Retention Index System. In: Giddings, JC and Keller, RA (eds) Advances in chromatography, vol 1, reprint. pp 229. Marcel Dekker, New York Google Scholar
  30. Lloyd DG (1985). Progress in understanding the natural history of New Zealand plants. New Zealand J Bot 23: 707–722 Google Scholar
  31. Luyt R and Johnson SD (2001). Hawkmoth pollination of the African epiphytic orchid Mystacidium venosum, with special reference to flower and pollen longevity. Pl Syst Evol 228: 49–62 CrossRefGoogle Scholar
  32. Luyt R and Johnson SD (2002). Postpollination nectar reabsorption and its implications for fruit quality in an epiphytic orchid. Biotropica 34: 442–446 Google Scholar
  33. Martins DJ and Johnson SD (2007). Hawkmoth pollination of aerangoid orchids in Kenya, with special reference to nectar sugar concentration gradients in the floral spurs. Amer J Bot 94: 650–659 CrossRefGoogle Scholar
  34. McDougall I and Chamalaun FH (1969). Isotopic dating and geomagnetic polarity studies on volcanic rocks from Mauritius, Indian Ocean. Geol Soc Amer Bull 80: 1419–1442 CrossRefGoogle Scholar
  35. McMullen CK (1987). Breeding systems of selected Galapagos Islands angiosperms. Amer J Bot 74: 1694–1705 CrossRefGoogle Scholar
  36. Micheneau C (2005) Systématique moléculaire de la sous-tribu des Angraecinae: perspectives taxonomiques et implications de la relation plantes-pollinisateurs dans l’évolution des formes florales. Thèse de doctorat, Université de La Réunion, Saint DenisGoogle Scholar
  37. Nilsson LA (1992). Orchid pollination biology. Trends Ecol Evol 7: 255–259 CrossRefGoogle Scholar
  38. Nilsson LA and Rabakonandrianina E (1988). Hawk-moth scale analysis and pollination specialization in the epilithic Malagasy endemic Aerangis ellisii (Reichenb. fil.) Schltr. (Orchidaceae). Bot J Linn Soc 97: 49–61 CrossRefGoogle Scholar
  39. Nilsson LA, Jonsson L, Rason L and Randrianjohany E (1985). Monophyly and pollination mechanisms in Angraecum arachnites Schltr. (Orchidaceae) in a guild of long-tongued hawk-moths (Sphingidae) in Madagascar. Biol J Linn Soc Lond 91: 1–19 CrossRefGoogle Scholar
  40. Nilsson LA, Jonsson L, Ralison L and Randrianjohany E (1987). Angraecoid orchids and hawkmoths in central Madagascar: specialized pollination systems and generalist foragers. Biotropica 19: 310–318 CrossRefGoogle Scholar
  41. Pacini E and Hesse M (2002). Types of pollen dispersal units in orchids and their consequences for germination and fertilization. Ann Bot 89: 653–664 PubMedCrossRefGoogle Scholar
  42. Raguso RA, Levin RA, Foose SE, Holmberg MW and McDade LA (2003). Fragrance chemistry, nocturnal rhythms and pollination “syndromes” in Nicotiana. Phytochemistry 63: 265–284 PubMedCrossRefGoogle Scholar
  43. Roberts DL (2001) Reproductive biology and conservation of the orchids of Mauritius. PhD, University of Aberdeen, AberdeenGoogle Scholar
  44. Schueller SK (2004). Self-pollination in island and mainland populations of the introduced hummingbird-pollinated plant, Nicotiana glauca (Solanaceae). Amer J Bot 91: 672–681 CrossRefGoogle Scholar
  45. Stebbins GL (1970). Adaptative radiation of reproductive characteristics in Angiosperms. I: Pollination mechanisms. Annual Rev Ecol Syst 1: 307–326 CrossRefGoogle Scholar
  46. Stpiczyńska M (2003). Incorporation of [3H]sucrose after the resorption of nectar from the spur of Plathanthera chlorantha (Custer) Rchb. Canad J Bot 81: 927–932 CrossRefGoogle Scholar
  47. Strasberg D, Rouget M, Richardson DM, Baret S, Dupont J and Cowling RM (2005). An assessment of habitat diversity and transformation on La Réunion Island (Mascarene Islands, Indian Ocean) as a basis for identifying broad-scale conservation priorities. Biodivers Conserv 14: 3015–3032 CrossRefGoogle Scholar
  48. Tremblay RL, Ackerman JD, Zimmerman JK and Calvo RN (2005). Variation in sexual reproduction in orchids and its evolutionary consequences: a spasmodic journey to diversification. Biol J Linn Soc Lond 84: 1–54 CrossRefGoogle Scholar
  49. van der Pijl L and Dodson CH (1966). Orchid flowers, their pollination and evolution. University of Miami Press, Coral GablesGoogle Scholar
  50. Wasserthal LT (1997). The pollinators of the Malagasy star orchids Angraecum sesquipedale, A. sororium and A. compactum and the evolution of extremely long spurs by pollinator shift. Bot Acta 110: 343–359 Google Scholar
  51. Webb CJ and Kelly D (1993). The reproductive biology of the New Zealand flora. Trends Ecol Evol 8: 442–447 CrossRefGoogle Scholar
  52. Woodell SRJ (1979). The role of unspecialized pollinators in the reproductive success of Aldabran plants. Philos Trans Roy Soc Lond Ser B 286: 99–108 CrossRefGoogle Scholar
  53. World checklist of Monocotyledons (2006) The Board of Trustees of the Royal Botanic Gardens, Kew. Published on the Internet: Accessed 5 September 2006, 14h30 GMT+3
  54. Zhang Z and Pawliszyn J (1993). Headspace solid-phase micro-extraction. Anal Chem 65: 1843–1852 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2008

Authors and Affiliations

  • C. Micheneau
    • 1
    Email author
  • J. Fournel
    • 2
  • A. Gauvin-Bialecki
    • 3
  • T. Pailler
    • 1
  1. 1.UMR 53 Peuplements Végétaux et Bio-Agresseurs en Milieu TropicalUniversité de La RéunionSaint-Denis Messag Cedex 9, La RéunionFrance
  2. 2.Herbier Universitaire de La RéunionSaint-Denis, La RéunionFrance
  3. 3.Laboratoire de Chimie des Substances Naturelles et des Sciences des AlimentsUniversité de La RéunionSaint-Denis, La RéunionFrance

Personalised recommendations