Plant Systematics and Evolution

, Volume 270, Issue 1–2, pp 59–74 | Cite as

Evidence of intra-varietal genetic variability in the vegetatively propagated crop oca (Oxalis tuberosa Mol.) in the Andean traditional farming system

  • A. Pissard
  • J. A. Rojas-Beltran
  • A.-M. Faux
  • S. Paulet
  • P. Bertin
Article

Abstract

Oxalis tuberosa is a vegetatively propagated tuber crop in the Andes. The peasants cultivate a great number of varieties for which genetic homogeneity has never been demonstrated. Morphological descriptors and ISSR markers were used to determine the intra-varietal diversity and the influence of the mode of conservation ex-situ vs in-situ. Molecular markers revealed an intra-varietal genetic diversity attesting that oca varieties are not pure clones. The morphological analysis was congruent with the peasant classification, contrary to the molecular markers. The comparison between both conservation strategies revealed a larger intra-varietal diversity in in-situ conditions and a genetic divergence between plants. The traditional practices are likely to be responsible of the intra-varietal polymorphism since the oca is propagated almost exclusively vegetatively. At the conservation level, differences could be explained by the sampling methods. A more integrated approach between genebanks and in-situ conservation is recommended to maintain the genetic resources of the species.

Keywords

ISSR oca Oxalis tuberosa genetic resources conservation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnau G, Lallemand J, Bourgoin M (2003) Fast and reliable strawberry cultivar identification using inter simple sequence repeat (ISSR) amplification. Euphytica 129: 69–79CrossRefGoogle Scholar
  2. Bianco M, Sachs C (1998) Growing oca, ulluco, and mashua in the Andes: socioeconomic differences in cropping practices. Agr Hum Values 15: 267–280CrossRefGoogle Scholar
  3. Brice EB, Smith ME, Mitchell SE, Kresovich S (2006) Conservation and change: a comparison of in-situ and ex-situ conservation of Jala maize germplasm. Crop Sci 46: 428–436CrossRefGoogle Scholar
  4. Cadima X, Gonzales R, Almanza J, García W, Terrazas F (eds) (2004) Catálogo de variedades locales de papa y oca de la zona de Candelaria. Serie: Conservación de la biodiversidad de raíces y tubérculos andinos. Una década de investigación para el desarrollo (1993–2003). No. 5. Fundación para la Promoción e Investigación de Productos Andinos (PROINPA); Centro Internacional de la Papa (CIP); Agencia Suiza para el Desarrollo y la Cooperación (COSUDE), CochabambaGoogle Scholar
  5. Cadima X, Iriarte V, Almanza J, Ugarte M L, Aguirre G, Terrazas F, García W (2003) Relación de la conservación in situex situin situ de tubérculos andinos. In: García W, Cadima X (eds) Manejo sostenible de la agrobiodiversidad de tubérculos andinos: síntesis de investigaciones y experiencias en Bolivia. Serie: conservación y uso de la biodiversidad de raíces y tubérculos andinos. Una década de investigación para el desarollo (1993 2003). No. 1. Fundación para la Promoción y Investigación de Productos Andinos (PROINPA); Centro Internacional de la Papa (CIP); Agencia Suiza para el Desarollo y la Cooperación (COSUDE), Cochabamba, pp 58–62Google Scholar
  6. Chebotar S, Röder MS, Korzum V, Saal B, Weber WE, Börner A (2003) Molecular studies on genetic integrity of open-pollinating species rye (Secale cereale L.) after long-term genebank maintenance. Theor Appl Genet 107: 1469–1476PubMedCrossRefGoogle Scholar
  7. del Rio AH, Bamberg JB, Huaman Z (1997) Assessing changes in the genetic diversity of potato gene banks. In-situ vs ex-situ. Theor Appl Genet 95: 199–204CrossRefGoogle Scholar
  8. Doyle JJ, Doyle JL (1990) Isolation of DNA from small amounts of plant tissues. Focus 12: 13–15Google Scholar
  9. Elias M, Panaud O, Robert T (2000) Assessment of genetic variability in a traditional cassava (Manihot esculenta Crantz) farming system, using AFLP markers. Heredity 85: 219–230PubMedCrossRefGoogle Scholar
  10. Elias M, Penet L, Vindry P, McKey D, Panaud O, Robert T (2001) Unmanaged sexual reproduction and the dynamics of genetic diversity of a vegetatively propagated crop plant, cassava (Manihot esculenta Crantz), in a traditional farming system. Mol Ecol 10: 1895–1907CrossRefGoogle Scholar
  11. Engels JMM, Visser L (eds) (2003) A guide to effective management of germplasm collections. IPGRI Handbooks for Genebanks No. 6. IPGRI, RomeGoogle Scholar
  12. Falconer DS (1981) Introduction to quantitative genetics. 2nd edn. Longman, LondonGoogle Scholar
  13. Gibbs PE (1976) Studies on the breeding system of Oxalis tuberosa Mol Flora 165: 129–138Google Scholar
  14. Gómez OJ, Blair MW, Frankow-Lindberg BE, Gullberg U (2005) Comparative study of common bean (Phaseolus vulgaris L.) landraces conserved ex-situ in genebanks and in-situ by farmers. Genet Resour Crop Evol 52: 371–380CrossRefGoogle Scholar
  15. Hamilton MB (1994) Ex-situ conservation of wild plant species: time to re-assess the genetic assumptios an dimplications of seed banks. Conserv Biol 8: 39–49CrossRefGoogle Scholar
  16. Jarvis DI, Myer L, Klemick H, Guarino L, Smale M, Brown AHD, Sadiki M, Sthapit B, Hodgkin T (2000) A training guide for in-situ conservation on farm. International Plant Genetic Resources Institute (IPGRI), RomeGoogle Scholar
  17. IPGRI-CIP (2001) Descriptores de Oca (Oxalis tuberosa Mol.). Instituto Internacional de Recursos Fitogenéticos, Rome; Centro Internacional de la Papa, LimaGoogle Scholar
  18. Lawrence MJ (2002) A comprehensive collection and regeneration strategy for ex-situ conservation. Genet Resour Crop Evol 49: 199–209CrossRefGoogle Scholar
  19. Li Q, He T, Xu Z (2005) Genetic evaluation of the efficacity of in-situ and ex-situ conservation of Parashorea chinensis (Dipterocarpaceae) in Southwestern China. Biochem Genet 43: 387–406PubMedCrossRefGoogle Scholar
  20. Maxted N, Ford-Lloyd BV, Hawkes JG (1997) Complementary conservation strategies. In: Maxted N, Ford-Lloyd BV, Hawkes JG (eds) Plant genetic conservation. The in situ approach. Chapmann & Hall, London, pp. 15–39Google Scholar
  21. Maxted N, Guarino L, Myer L, Chiwona EA (2002) Towards a methodology for on-farm conservation of plant genetic resources. Genet Resour Crop Evol 49: 31–46CrossRefGoogle Scholar
  22. Park Y-J, Dixit A, Ma K-H, Kang J-H., Rao VR., Cho E-H (2005) On-farm conservation strategy to ensure crop genetic diversity in changing agro-ecosystems in the Republic of Korea. J Agron Crop Sci 191: 401–410CrossRefGoogle Scholar
  23. Parzies HK, Spoor W, Ennos RA (2000) Genetic diversity of barley landrace accessions (Hordeum vulgare ssp. vulgare) conserved for different lengths of time in ex-situ genebanks. Heredity 84: 476–486PubMedCrossRefGoogle Scholar
  24. Peakall R, Smouse PE (2005) GenAlEx 6: Genetic Analysis in Excel. Population genetic software for teaching and research. Australian National University, CanberraGoogle Scholar
  25. Pharmawati M, Yan G, Finnegan PM (2005) Molecular variation and fingerprinting of Leucadendron cultivars (Proteaceae) by ISSR markers. Ann Bot 95: 1163–1170PubMedCrossRefGoogle Scholar
  26. Pietilä L, Jokela P (1988) Cultivation of minor tuber crops in Peru and Bolivia. J Agr Sci Finland 60: 87–92Google Scholar
  27. Pissard A, Ghislain M, Bertin P (2006) Genetic diversity of the Andean tuber-bearing species, oca (Oxalis tuberosa Mol.), investigated by inter-simple sequence repeats. Genome 49: 8–16PubMedCrossRefGoogle Scholar
  28. Pissard A, Arbizu C, Ghislain M, Faux A-M, Paulet S, Bertin P (2007) Congruence between morphological and molecular markers inferred from the analysis of the intra-morphotype genetic diversity and the spatial structure of Oxalis tuberosa. Molec Genetica. doi: 10.1007/s10709-007-9150-9Google Scholar
  29. Ramirez M (2002) On farm conservation of minor tubers in Peru: the dynamics of oca (Oxalis tuberosa) landrace management in a peasant community. Plant Genet Res Newsl 132: 1–9Google Scholar
  30. Sperling CR, King SR (1990) Andean tuber crops: worldwide potential. In: Janick J, Simon JE (eds) Advances in new crops. Timber Press, Portland, pp 428–435Google Scholar
  31. Terrazas F, Valdivia G (1998) Spatial dynamics of in situ conservation: handling the genetic diversity of Andean tubers in mosaic systems Plant. Genet Res Newsl. 114: 9–15Google Scholar
  32. Terzopoulos PJ, Kolano B, Bebeli PJ, Kaltsikes PJ, Metzidakis I (2005) Identification of Olea europea L. cultivars using inter-simple sequence repeat markers. Sci Hortic 105: 45–51CrossRefGoogle Scholar
  33. Trognitz BR, Hermann M, Carrión S (1998) Germplasm conservation of oca (Oxalis tuberosa Mol.) through botanical seed. Seed formation under a system of polymorphic incompatibility. Euphytica 101: 133–141CrossRefGoogle Scholar
  34. Trognitz BR, Hermann M (2001) Inheritance of tristyly in Oxalis tuberosa (Oxalidaceae). Heredity 86: 564–573PubMedCrossRefGoogle Scholar
  35. Van de Peer Y, De Wachter R (1994) TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10: 569–570PubMedGoogle Scholar
  36. Villaroel TC, Salazar DG (1999) Biodiversidad de tubérculos andinos: identificación y análisis de factores locales para apoyar la conservación in-situ. El caso de Rodeo Alto, Provincia Chapare, Cochabamba. In: Proceedings of “In situ 99, E-Conference”. Consorcio para el desarrollo sostenible de la ecorregión andina (CONDESAN); Centro Internacional de la Papa (CIP), LimaGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • A. Pissard
    • 1
  • J. A. Rojas-Beltran
    • 2
  • A.-M. Faux
    • 1
  • S. Paulet
    • 1
  • P. Bertin
    • 1
  1. 1.Département de Biologie appliquée et Productions agricoles, Ecophysiologie et Amélioration VégétaleUniversité catholique de LouvainLouvain-La-NeuveBelgium
  2. 2.Fundación PROINPA (Promoción e Investigación de Productos Andinos)CochabambaBolivia

Personalised recommendations