Advertisement

Plant Systematics and Evolution

, Volume 270, Issue 1–2, pp 109–137 | Cite as

Genetic and morphological variation in the Bulbophyllum exaltatum (Orchidaceae) complex occurring in the Brazilian “campos rupestres”: implications for taxonomy and biogeography

  • P. Luz Ribeiro
  • E. Leite BorbaEmail author
  • E. de Camargo Smidt
  • S. Mota Lambert
  • A. Selbach Schnadelbach
  • C. van den Berg
Article

Abstract

The Bulbophyllum exaltatum complex comprises 15 described taxa, and present a number of unresolved taxonomic questions, especially among populations found in the Brazilian campo rupestre vegetation. Allozymes were examined in 33 populations to determine the degree of genetic variability between them and their degree of differentiation to better define the taxa of this group. Additionally morphometric analyses were also performed on representatives of 24 populations. All of the populations examined demonstrated high levels of variability and none of the species formed distinct groups comprising all of the conspecific populations. However, the populations primarily grouped according to their regional occurrence, with a distinction between populations of the states of Minas Gerais and Bahia, which coincided with the geophysical disjunction of the mountain chains where they occur. It is probable that hybridization or incipient differentiation is contributing to the elevated genetic identity observed among the populations, generating a reticulated grouping pattern.

Keywords

allozymes Bulbophyllum Cadeia do Espinhaço campo rupestre genetic variability geographic barrier morphometrics orchidaceae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azevedo CO, Borba EL, van den Berg C (2006) Evidence of natural hybridization and introgression in Bulbophyllum involutum Borba, Semir& F.Barros and B. weddellii (Lindl.) Rchb.f. (Orchidaceae) in the Chapada Diamantina, Brazil, by using allozyme markers. Rev Brasil Bot 29: 415–421Google Scholar
  2. Azevedo MTA, Borba EL, Semir J, Solferini VN (2007) Very high genetic variability in Neotropical myophilous orchids. Bot J Linn Soc 153: 33–40CrossRefGoogle Scholar
  3. Barkman TJ, Simpson BB (2002) Hybrid origin and parentage of Dendrochilum acuiferum (Orchidaceae) inferred in a phylogenetic context using nuclear and plastid DNA sequence data. Syst Bot 27: 209–220Google Scholar
  4. Borba EL, Semir J (1998a) Bulbophyllum × cipoense (Orchidaceae), a new natural hybrid from the Brazilian campos rupestres: description and biology. Lindleyana 13: 113–120Google Scholar
  5. Borba EL, Semir J (1998b) Wind-assisted fly pollination in three species of Bulbophyllum (Orchidaceae) occurring in the Brazilian campos rupestres. Lindleyana 13: 201–218Google Scholar
  6. Borba EL, Semir J, Barros F (1998) Bulbophyllum involutum Borba, Semir& F. Barros (Orchidaceae), a new species from the Brazilian “campos rupestres”. Novon 8: 225–229CrossRefGoogle Scholar
  7. Borba EL, Semir J (1999) Temporal variation in pollinarium size after its removal in species of Bulbophyllum: a different mechanism preventing self-pollination in Orchidaceae. Plant Syst Evol 217: 197–204CrossRefGoogle Scholar
  8. Borba EL, Shepherd J, Semir J (1999) Reproductive systems and crossing potential in three species of Bulbophyllum (Orchidaceae) occurring in the Brazilian “campos rupestres”. Plant Syst Evol 217: 205–214CrossRefGoogle Scholar
  9. Borba EL, Semir J, Shepherd GJ (2001a) Self-incompatibility, inbreeding depression and crossing potential in five Brazilian Pleurothallis (Orchidaceae) species. Ann Bot 88: 89–99CrossRefGoogle Scholar
  10. Borba EL, Felix JM, Solferini VN, Semir J (2001b) Fly-pollinated Pleurothallis (Orchidaceae) species have high genetic variability: evidence from isozyme markers. Am J Bot 88: 419–428CrossRefGoogle Scholar
  11. Borba EL, Shepherd GJ, van den Berg C, Semir J (2002) Floral and vegetative morphometrics in five Pleurothallis (Orchidaceae) species: correlation with taxonomy, phylogeny, genetic variability and pollination systems. Ann Bot 90: 219–230PubMedCrossRefGoogle Scholar
  12. Braga PIS (1977) Aspectos biológicos das Orchidaceae de uma campina na Amazônia Central. Acta Amazônica 7(suppl 2): 1–89Google Scholar
  13. Brune W, Alfenas AC, Junghans TG (1998) Identificações específicas de enzimas em géis. In: Alfenas AC (ed) Eletroforese de isoenzimas e proteinas afins: fundamentos e aplicações em plantas e microorganismos. Universidade Federal de Viçosa, Viçosa, pp 201–328Google Scholar
  14. Christensen DE (1994) Fly pollination in the Orchidaceae. In: Arditti J (ed) Orchid biology: reviews and perspectives VI. John Wiley& Sons, New York, pp 415–454Google Scholar
  15. Chung MY, Chung MG (1999) Allozyme diversity and population structure in Korean population of Cymbidium goeringii (Orchidaceae). J Plant Res 112: 139–144CrossRefGoogle Scholar
  16. Chung MG, Chung MY, Oh GS, Epperson BK (1998) Spatial genetic structure in populations of Cymbidium goeringii (Orchidaceae). Genes Genet Syst 73: 281–285CrossRefGoogle Scholar
  17. Chung MY, Nason JD, Chung MG (2004) Spatial genetic structure in populations of the terrestrial orchid Cephalanthera longibracteata (Orchidaceae). Am J Bot 91: 52–57Google Scholar
  18. Clegg MT (1989) Molecular diversity in plant populations. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding and genetic resources. Sinauer, Sunderland, pp 98–115Google Scholar
  19. Corrias R, Rossi W, Arduino P, Cianchi R, Bullini L (1991) Orchis longicornu Poiret in Sardinina: genetic, morphological and chorological data. Webbia 45: 71–101Google Scholar
  20. Crawford DJ (1989) Enzyme eletrophoresis and plant systematics. In: Soltis ED, Soltis PS (eds) Isozymes in plant biology. Dioscorides Press, Portland, pp 146–164Google Scholar
  21. Crow JF, Aoki K (1984) Group selection for a polygenic behavioral trait: estimating the degree of population subdivision. Proc Natl Acad Sci USA 81: 6073–6077PubMedCrossRefGoogle Scholar
  22. Dressler RL (1993) Phylogeny and classification of the orchid family. Dioscorides Press, PortlandGoogle Scholar
  23. Ehlers BK, Pedersen HAE (2000) Genetic variation in three species of Epipactis (Orchidaceae): geographic scale and evolutionary inferences. Biol J Linn Soc 69: 411–430CrossRefGoogle Scholar
  24. Farinaci JS (2001) Variabilidade genética em algumas espécies de Bulbophyllum Thouars (Orchidaceae) de campos rupestres. Master Thesis, Universidade Estadual de Campinas, CampinasGoogle Scholar
  25. Felsenstein J (1993) PHYLIP (Phylogeny Inference Package) version 3.6, University of Washington, Department of Genetics, SeattleGoogle Scholar
  26. Giulietti AM, Pirani JR (1988) Patterns of geographic distribution of some plant species from the Espinhaço Range, Minas Gerais and Bahia, Brazil. In: Vanzolini PE, Heyer WR (eds) Proceedings of a workshop on Neotropical distribution patterns. Academia Brasileira de Ciências, Rio de Janeiro, pp 39–69Google Scholar
  27. Gower JC (1971) A general coefficient of similarity and some one of its properties. Biometrics 27: 857–872CrossRefGoogle Scholar
  28. Hamrick JL, Godt MJ (1990) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding and genetic resources. Sinauer, Sunderland, pp 43–63Google Scholar
  29. Harley RM (1988) Evolution and distribution of Eriope (Labiatae) and its relatives in Brazil. In: Vanzolini PE, Heyer WR (eds) Proceedings of a workshop on neotropical distribution patterns. Academia Brasileira de Ciências, Rio de Janeiro, pp 71–120Google Scholar
  30. Hollingsworth PM, Dickson JH (1997) Genetic variation in rural and urban populations of Epipactis helleborine (L.) Crantz. (Orchidaceae) in Britain. Bot J Linn Soc 123: 321–331CrossRefGoogle Scholar
  31. Jesus FF, Solferini VN, Semir J, Prado PI (2001) Local genetic differentiation in Proteopsis argentea (Asteraceae), a perennial herb endemic in Brazil. Plant Syst Evol 226: 59–68CrossRefGoogle Scholar
  32. Klier K, Leoschke MJ, Wendel JF (1991) Hybridization and introgression in white and yellow landyslipper orchids (Cypripedium candidum and C. pubescens). J Hered 82: 305–318Google Scholar
  33. Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinformatics 5: 150–163PubMedCrossRefGoogle Scholar
  34. Lambert SM, Borba EL, Machado MC, Andrade SCS (2006a) Allozyme diversity and morphometrics of Melocactus paucispinus (Cactaceae) and evidence for hybridization with M. concinnus in the Chapada Diamantina, North-eastern Brazil. Ann Bot 97: 389–403CrossRefGoogle Scholar
  35. Lambert SM, Borba EL, Machado MC (2006b) Allozyme diversity and morphometrics of the endangered Melocactus glaucescens (Cactaceae), and investigation of the putative hybrid origin of Melocactus × albicephalus (Melocactus ernestii × M. glaucescens) in north-eastern Brazil. Plant Sp Biol 21: 93–108CrossRefGoogle Scholar
  36. Levene H (1949) One matching problem arising in genetics. Ann Math Statist 20: 91–94CrossRefGoogle Scholar
  37. Levin DA (2000) The origin, expansion, and demise of plant species. Oxford University Press, New YorkGoogle Scholar
  38. Machado MC, Zappi DC, Borba EL, Lambert SM (in press) Genetic variability of three Discocactus Pfeiff. (Cactaceae) species from the state of Bahia, Brazil. Syst BotGoogle Scholar
  39. McCune B, Mefford MJ (1999) PCOrd - Multivariate analysis of ecological data, version 4.10. MjM Software, Gleneder BeachGoogle Scholar
  40. Miller MP (1997) Tools for population genetics analysis (TFPGA) 1.3: A windows program for the analysis of allozyme and molecular population genetic data. Distributed by the authorGoogle Scholar
  41. Murren CJ, Ellison AM (1998) Seed dispersal characteristics of Brassavola nodosa (Orchidaceae). Amer J Bot 85: 675–680CrossRefGoogle Scholar
  42. National Geodetic Survey (2002) INVERSE - Version 2.0. http://ngs.noaa.gov/. 18 Apr. 2006
  43. Nei M (1972) Genetic distance between populations. Am Nat 106: 283–292CrossRefGoogle Scholar
  44. Nei M (1978) Estimation of average heterozigosity and genetic distance from a small number of individuals. Genetics 89: 583–590PubMedGoogle Scholar
  45. Nielsen LR (2000) Natural hybridization between Vanilla claviculata (W.Wright) Sw. and V. barbellata Rchb.f. (Orchidaceae): genetic, morphological, and pollination experimental data. Bot J Linn Soc 133: 285–302CrossRefGoogle Scholar
  46. Pereira ACS, Borba EL, Giulietii AM (2007). Genetic and morphological variability of the endangered Syngonanthus mucugensis Giul. (Eriocaulaceae), from the Chapada Diamantina, Brazil: implications for conservation and taxonomy. Bot J Linn Soc 153: 401–416CrossRefGoogle Scholar
  47. Raymond M, Rousset F (1995) GENEPOP (version 1–2): population genetics software for exact tests and ecumenicism. J Hered 86: 248–249Google Scholar
  48. Ribeiro PL, Borba EL, Toscano de Brito ALV (2005) O gênero Bulbophyllum Thouars (Orchidaceae) na Chapada Diamantina, Bahia, Brasil. Rev Brasil Bot 28: 423–439Google Scholar
  49. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43: 223–225CrossRefGoogle Scholar
  50. Sazima M (1978) Polinização por moscas em Bulbophyllum warmingianum Cogn. (Orchidaceae) na Serra do Cipó, Minas Gerais, Brasil. Rev Brasil Bot 1: 133–138Google Scholar
  51. Sharma IK, Clements MA, Jones DL (2000) Observations of high genetic variability in the endangered Australian terrestrial orchid Pterostylis gibosa R. Br. (Orchidaceae). Biochem Syst Ecol 28: 651–663PubMedCrossRefGoogle Scholar
  52. Shepherd GJ (1995) FITOPAC 1. Universidade Estadual de Campinas, CampinasGoogle Scholar
  53. Silva UF, Borba EL, Semir J, Marsaioli AJ (1999) A simple solid injection device for the analyses of Bulbophyllum (Orchidaceae) volatiles. Phytochemistry 50: 31–34CrossRefGoogle Scholar
  54. Slatkin M, Barton NH (1989) A comparison of three indirect methods for estimating average levels of gene flow. Evolution 43: 1349–1368CrossRefGoogle Scholar
  55. Sneath PHA, Sokal RR (1973) Numerical taxonomy. Freeman and Co, San FranciscoGoogle Scholar
  56. Soliva M, Widmer A (1999) Genetic and floral divergence among sympatric of Gymnadenia conopsea s.l. Int J Plant Sci 160: 897–910CrossRefGoogle Scholar
  57. Soltis DE, Haufler CH, Darrow DC, Gastony GJ (1983) Starch gel electrophoresis of ferns: a compilation of grinding buffers, gel and electrode buffers, and staining schedule. Am Fern J 73: 9–27CrossRefGoogle Scholar
  58. StatSoft INC (2003) STATISTICA (data analysis software system), version 6.1. StatSoft, TulsaGoogle Scholar
  59. Swofford DL (2000) PAUP* 4.1: phylogenetic analysis using parsimony (*and other methods). Sinauer, SunderlandGoogle Scholar
  60. Swofford DL, Selander RB (1989) BIOSYS-1: computer program for the analysis of allelic variation in population genetics and biochemical systematics. Natural History Survey, ChampainGoogle Scholar
  61. Trapnell DW, Hamhick JL, Nason JD (2004) Three-dimensional fine-scale structure of the neotropical epiphytic orchid, Laelia rubescens. Mol Ecol 13: 1111–1118CrossRefGoogle Scholar
  62. Tremblay RL, Ackerman JD (2001) Gene flow and effective population size in Lepanthes (Orchidaceae): a case for genetic drift. Biol J Linn Soc 72: 47–62Google Scholar
  63. van der Bank H, van der Bank M, van Wyk B (2001) A review of the use of allozyme electrophoresis in plant systematics. Biochem Syst Ecol 29: 469–483PubMedCrossRefGoogle Scholar
  64. van der Pijl L, Dodson CH (1966) Orchid flowers: their pollination and evolution. University of Miami Press, Coral GablesGoogle Scholar
  65. Verola CF (2002) Biologia floral e sistemas de reprodução em espécies de Bulbophyllum (Orchidaceae) ocorrentes em mata de galeria, campo rupestre e floresta estacional. Master Thesis, Universidade Estadual de Campinas, CampinasGoogle Scholar
  66. Weir BS, Cockerham CC (1984) Estimating F-statistic for the analysis of population-structure. Evolution 38: 1358–1370CrossRefGoogle Scholar
  67. Wright S (1951) The genetical structure of populations. Ann Eugen 15: 323–354Google Scholar
  68. Wright S (1978) Evolution and the genetics of populations. Variability within and among natural populations, vol. 4. University of Chicago Press, ChicagoGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • P. Luz Ribeiro
    • 1
  • E. Leite Borba
    • 2
    Email author
  • E. de Camargo Smidt
    • 1
  • S. Mota Lambert
    • 1
  • A. Selbach Schnadelbach
    • 1
  • C. van den Berg
    • 1
  1. 1.Departamento de Ciências Biológicas, Laboratório de Sistemática Molecular de PlantasUniversidade Estadual de Feira de SantanaFeira de Santana, BahiaBrazil
  2. 2.Instituto de Ciências Biológicas, Departamento de Botânica, Laboratório de SistemáticaUniversidade Federal de Minas GeraisMinas GeraisBrazil

Personalised recommendations