Plant Systematics and Evolution

, Volume 269, Issue 3–4, pp 245–258 | Cite as

Genetic differentiation of metallicolous and non-metallicolous Armeria maritima (Mill.) Willd. taxa (Plumbaginaceae) in Central Europe

Article

Abstract

This study investigates the genetic differentiation within the Central European Armeria maritima (Mill.) Willd. complex with special reference to the metallicolous populations using AFLP markers. Our sampling comprised all metallicolous (ssp. halleri, hornburgensis, bottendorfensis, eifeliaca, calaminaria), and non-metallicolous taxa (ssp. maritima, elongata, alpina). Geographical and genetic distances between populations were moderately positively correlated. Genetic variability of metallicolous and non-metallicolous populations was not significantly different. Lowland populations were clearly differentiated from the alpine populations. Within the lowland group metallicolous and non-metallicolous populations were not genetically differentiated. All lowland populations show a regional differentiation and close relationships to ssp. elongata. Thus, the metallicolous taxa should not be maintained as subspecies. Likewise, their treatment as varieties of a ssp. halleri s.l. is critical because this taxon cannot be consistently characterized throughout its geographical range and may be an artefact itself. If a taxonomical recognition should be considered necessary it is advisable to treat the microendemics as varieties of ssp. elongata.

Keywords

Armeria maritima complex (including maritima, elongata, alpina, halleri, hornburgensis, bottendorfensis, eifeliacaCentral Europe metallicolous populations genetic variability parameters genetic variation AFLP AMOVA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker HG (1966). The evolution, functioning and breakdown of heteromorphic incompatibility systems. I. The Plumbaginaceae. Evolution 20: 349–368 CrossRefGoogle Scholar
  2. Baumbach H (2005) Genetische Differenzierung mitteleuropäischer Schwermetallsippen von Silene vulgaris, Minuartia verna und Armeria maritima unter Berücksichtigung biogeographischer, montanhistorischer und physiologischer Aspekte. Dissertationes Botanicae 398, Borntraeger, StuttgartGoogle Scholar
  3. Baumbach H and Hellwig FH (2003). Genetic variation within and among metal-tolerant and non-tolerant populations of Armeria maritima (Mill.) Willd. s. l. in Central and Northeast Germany. Pl Biol 5(2): 186–193 CrossRefGoogle Scholar
  4. Baumbach H and Volkmann H (2002). Dynamik, genetische Struktur und Schutz kleiner Populationen – das Beispiel von Armeria maritima ssp. hornburgensis. Mitteilungen zur floristischen Kartierung in Sachsen-Anhalt 7: 3–24 Google Scholar
  5. Benkert D, Fukarek F and Korsch H (1996). Verbreitungsatlas der Farn- und Blütenpflanzen Ostdeutschlands. G. Fischer, Jena Google Scholar
  6. Christiansen W (1931). Die mitteldeutschen Formenkreise der Gattung Armeria. Botanisches Archiv 31: 247–265 Google Scholar
  7. Döring E (2002) ökotypenbildung bei Armeria maritima (Mill.) Willd. (Plumbaginaceae). Diploma thesis, Univ. Halle-WittenbergGoogle Scholar
  8. Ernst W (1974). Schwermetallvegetation der Erde. Gustav Fischer, Stuttgart Google Scholar
  9. Excoffier L, Smouse P and Quattro J (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479–491 PubMedGoogle Scholar
  10. Fuertes Aguilar J and Nieto Feliner G (2003). Additive polymorphisms and reticulation in an ITS phylogeny of thrifts (Armeria, Plumbaginaceae). Molec Phylogenet Evol 28: 430–447 PubMedCrossRefGoogle Scholar
  11. Golde A (2001). Schwermetallfluren – ein in Sachsen bislang verkannter Lebensraumtyp. Überblick über Vorkommen und Ausbildungsformen im Freiberger Bergbaugebiet. Berichte der Arbeitsgemeinschaft Sächsischer Botaniker (NF) 18: 49–60 Google Scholar
  12. Haeupler H, Jagel A, Schumacher W (2003) Verbreitungsatlas der Farn- und Blütenpflanzen in Nordrhein-Westfalen. Landesanstalt für Ökologie, Bodenordnung und Forsten NRW (Ed), RecklinghausenGoogle Scholar
  13. Hellwig F, Nolte M, Ochsmann J and Wissemann V (1999). Rapid isolation of total cell DNA from milligram plant tissue. Haussknechtia 7: 29–34 Google Scholar
  14. Hildebrandt U, Hoef-Emden K, Backhausen S, Bothe H, Bozek M, Siuta A and Kuta E (2006). The rare, endemic zinc violets of Central Europe originate from Viola lutea Huds. Pl Syst Evol 257: 205–222 CrossRefGoogle Scholar
  15. Koch M, Mummenhoff K and Hurka H (1998). Systematics and evolutionary history of heavy metal tolerant Thlaspi caerulescens in Western Europe: evidence from genetic studies based on isozyme analysis. Biochem Syst Ecol 26: 823–838 CrossRefGoogle Scholar
  16. Krüger A, Hellwig F and Oberprieler C (2002). Genetic diversity in natural and anthropogenic inland populations of salt-tolerant plants: random amplified polymorphic DNA analyses of Aster tripolium L. (Compositae) and Salicornia ramosissima Woods (Chenopodiaceae). Molec Ecol 11: 1647–1655 CrossRefGoogle Scholar
  17. Lange E (1938). Die Pflanzen der Freiberger Halden. Mitteilungen des Naturwissenschaftlichen Vereins Freiberg 3: 20–29 Google Scholar
  18. Lefebvre C (1976). Breeding system and population structure of Armeria maritima (Mill.) Willd. on a zinc-lead mine. New Phytol 77: 187–192 CrossRefGoogle Scholar
  19. Lefebvre C (1985). Morphological variation, breeding system and demography at populational and subpopulational levels in Armeria maritima (Mill.) Willd. In: Jacquard, P, Heim, G and Antonovics, J (eds) Genetic differentiation and dispersal in plants, pp 129–139. Springer, Berlin Google Scholar
  20. Mantel N (1967). The detection of disease clustering and a generalized regression approach. Cancer Res 27: 209–220 PubMedGoogle Scholar
  21. Mengoni A, Gonelli C, Galardi F, Gabbrielli R and Bazzicalupo M (2000). Genetic diversity and heavy metal tolerance in populations of Silene paradoxa L. (Caryophyllaceae): a random amplified polymorphic DNA analysis. Molec Ecol 9: 1319–1324 CrossRefGoogle Scholar
  22. Mengoni A, Barabesi C, Gonelli C, Galardi F, Gabbrielli R and Bazzicalupo M (2001). Genetic diversity of heavy metal-tolerant populations in Silene paradoxa L. (Caryophyllaceae): a chloroplast microsatellite analysis. Molec Ecol 10: 1909–1916 CrossRefGoogle Scholar
  23. Miller M (1997) Tools for population genetic analysis (TFPGA) 1.3: A windows program for the analysis of allozyme and molecular population genetic dataGoogle Scholar
  24. Nei M (1972). Genetic distance between populations. Amer Naturalist 106(949): 283–292 CrossRefGoogle Scholar
  25. Nieto Feliner G, Fuertes Aguilar J and Rosello J A (2002). Reticulation or divergence: the origin of a rare serpentine endemic assessed with chloroplast, nuclear and RAPD markers. Pl Syst Evol 231: 19–38 CrossRefGoogle Scholar
  26. Pardey A (1999). Grundlagen des Naturschutzes auf Schwermetallstandorten in NRW. Abiotische Verhältnisse, Flora, Vegetation, Fauna, aktuelle Schutzsituation und zukünftige Zielsetzungen. LÖBF Schriftenreihe 16: 7–48 Google Scholar
  27. Pauwels M, Saumitou-Laprade P, Holl A C, Petit D and Bonnin I (2005). Multiple origin of metallicolous populations populations of the pseudometallophyte Arabidopsis halleri (Brassicaceae) in central Europe: the cpDNA testimony. Molec Ecol 14: 4403–4414 CrossRefGoogle Scholar
  28. Philipp M, Madsen HES and Siegismund HR (1992). Gene flow and population structure in Armeria maritima. Heredity 69(1): 32–42 Google Scholar
  29. Pinto da Silva AR (1972) Armeria Willd. In: Tutin TG, et al. (eds) Flora Europaea Vol. 3: Diapensiaceae to Myoporaceae, University Press, Cambridge, pp 30–38Google Scholar
  30. Schneider S, Roessli D, Excoffier L (2000) Arlequin ver. 2.000. University of GenevaGoogle Scholar
  31. Schubert R (1954). Zur Systematik und Pflanzengeographie der Charakterpflanzen der Mitteldeutschen Schwermetallpflanzengesellschaften. Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg, Math.-Naturwiss. Reihe 3(4): 863–882 Google Scholar
  32. Schulz A (1912) Über die auf schwermetallhaltigem Boden wachsenden Phanerogamen Deutschlands. 40. Jahresber. Westfäl. Prov.-Verein Wiss.: 210–227, Münster.Google Scholar
  33. Trommer EE (1881). Die Vegetationsverhältnisse im Gebiet der oberen Freiberger Mulde. Gerlachsche Buchdruckerei, Freiberg Google Scholar
  34. Vekemans X, Lefebvre C, Belalia L and Meerts P (1990). The evolution and breakdown of the heteromorphic incompatibility system of Armeria maritima revisited. Evol Trends Pl 4(1): 15–23 Google Scholar
  35. Vekemans X, Lambert A and Lefebvre C (1992). Isozyme variation at the populational level in Armeria maritima. Belg J Bot 125(2): 270–275 Google Scholar
  36. Vekemans X and Lefebvre C (1997). On the evolution of heavy-metal tolerant populations in Armeria maritima: Evidence from allozyme variation and reproductive barriers. J Evol Biol 10(2): 175–191 CrossRefGoogle Scholar
  37. Verkleij J, Bast-Cramer WB, Koevoets P (1989) Genetic studies in populations of Silene cucubalus occurring on various polluted and unpolluted areas. In: Scholz F, Gregorius HR, Rudin D (eds) Genetic effects of air pollutants in forest tree populations, pp 107–114Google Scholar
  38. Vos P, Hogers R and Bleeker M, et al. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23: 4407–4414 PubMedCrossRefGoogle Scholar
  39. Wallroth FW (1842). Monographischer Versuch über die Gewächs-Gattung Armeria Willd. Beitr Bot 1(1): 168–218 Google Scholar
  40. Weidema IR, Siegismund HR and Philipp M (1996). Distribution of genetic variation within and among Danish populations of Armeria maritima, with special reference to the effects of population size. Hereditas 124: 121–129 CrossRefGoogle Scholar
  41. Wisskirchen R and Haeupler H (1998). Standardliste der Farn- und Blütenpflanzen Deutschlands. Ulmer, Stuttgart (Hohenheim) Google Scholar
  42. Wright S (1951). The genetical structure of populations. Ann Eugenet 15: 323–354 Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institut für Spezielle BotanikFriedrich-Schiller-UniversitätJenaGermany
  2. 2.Institut für Biochemie und BiologieUniversität PotsdamPotsdamGermany

Personalised recommendations