Plant Systematics and Evolution

, Volume 269, Issue 3–4, pp 145–157 | Cite as

Single nucleotide polymorphisms of Gcyc1 (Cycloidea) in Conandron ramondioides (Gesneriaceae) from Southeast China

  • L.-H. Xiao
  • Y.-Z. Wang


Conandron ramondioides with actinomorphic flower in Gesneriaceae is an endemic species distributed in Taiwan, Southeast of China and Japan. Populations are usually small and isolated in typically fragmented habitat. Based on SNPs of Gcyc1 (Cycloidea), a TCP gene known in patterning the floral dorsoventral asymmetry, we have explored the molecular evolution and genetic differentiation of Gcyc1 at population level, and the population history of C. ramondioides populations distributed in SE China. Eighteen SNPs are detected in 774-bp of the gene, of which eleven are non-synonymous. However, morphological observation of flowers shows that there is no visible differentiation in shape and size across the dorsoventral axis within each whorl. None of the eighteen SNPs is by all shared the eleven populations. Population differentiation is significant. These results reveal that evolution of Gcyc1 at population level is well in accord with the neutral theory. Our study indicates that the SNPs of developmental genes are also useful molecular markers for exploring the genetic differentiation and population history in non-model organisms.


Conandron ramondioides (Gesneriaceae) Gcyc1 gene Habitat fragmentation Non-model organism Population history SNP 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Almeida J, Rocheta M and Gallego L (1997). Genetic control of flower shape in Antirrhinum majus. Development 124: 1387–1392 PubMedGoogle Scholar
  2. Barraclough TG (2001). Evolutionary rates and species divergence in flowering plants. Evolution 55: 677–683 PubMedCrossRefGoogle Scholar
  3. Barrett SCH, Kohn JR (1991) Genetic and evolutionary consequences of small population size in plants: implication for convervation. In: Falk D. A. Genetic, conservation of rare plants. Blackwell Science (ed.), Oxford University Press, New York, Oxford, pp 3–30Google Scholar
  4. Brookes AJ (1999). The essence of SNPs. Gene 234: 177–186 PubMedCrossRefGoogle Scholar
  5. Brumfield RT, Beerli P, Nickerson DA and Edwards SV (2003). The utility of single nucleotide polymorphisms in inferences of population history. Trends Ecol Evol 18(5): 249–256 CrossRefGoogle Scholar
  6. Citerne HL, Luo D, Pennington RT, Coen E and Cronk QCB (2003). A phylogenomic investigation of Cycloidea-like TCP genes in the Leguminosae. Pl Physiol 131: 1042–1053 CrossRefGoogle Scholar
  7. Citerne HL, Möller HLM and Cronk QCB (2000). Diversity of cyc-like in Gesneriaceae in relation to floral symmetry. Ann Bot 86: 167–176 CrossRefGoogle Scholar
  8. Cubas P, Lauter N, Doebley J and Coen E (1999b). The TCP domain: a motif found in proteins regulating plant growth and development. Pl J 18: 215–222 CrossRefGoogle Scholar
  9. Cubas P, Vincent C and Coen E (1999a). An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401: 157–161 CrossRefGoogle Scholar
  10. Doebley J, Stec A and Hubbard L (1997). The evolution of apical dominance in Maize. Nature 386: 485–488 PubMedCrossRefGoogle Scholar
  11. Doyle JJ and Doyle JL (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19: 11–15 Google Scholar
  12. Fore AF and Guttman SI (1992). Genetic structure after forest fragmentation: a landscape ecology perspective of Acer saccharum. Canad J Bot 70: 1659–1668 Google Scholar
  13. Fukuda T, Yokoyama J and Maki M (2003). Molecular evolution of CYCLOIDEA-like genes in Fabaceae. Molec Evol 57: 588–597 CrossRefGoogle Scholar
  14. Halushka MK, Fan JB, Bentley K, Hsie L, Shen N, Weder A, Cooper R, Lipshutz R and Chakravarti A (1999). Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nature Genetics 22: 239–247 PubMedCrossRefGoogle Scholar
  15. Hamrick JK and Godt MJW (1990). Allozyme diversity in plant species. In: Brown, AHD, Clegg, MT and Kahler, AL et al. (eds) Plant population genetics, breeding, and genetic resources, pp 43–63. Mass. Sinauer, Sunderland Google Scholar
  16. Han B and Xue YB (2003). Genome-wide intra-specific DNA-sequence in rice. Curr Opin Pl Biol 6: 134–138 CrossRefGoogle Scholar
  17. Hanski I (1991). Metapopulation dynamics: brief history and conceptual domain. Biol J Linn Soc 42: 3–16 Google Scholar
  18. Husband BC and Barrett SCH (1996). A metapopulation perspective in plant population biology. J Ecol 84: 461–469 CrossRefGoogle Scholar
  19. Kosugi S and Ohashi Y (1997). PCF1 and PCF2 specially bind to cis elements in the rice proliferating cell nuclear antigen gene. Pl Cell 9: 1607–1619 Google Scholar
  20. Luo D, Carpenter R, Vincent C, Copsey L and Coen E (1996). Origin of floral asymmetry in Antirrhinum. Nature 383: 794–799 PubMedCrossRefGoogle Scholar
  21. Luo D, Carpenter R, Vincent C, Copsey L and Coen RS (1999). Control of organ asymmetry in flowers of Antirrhimum. Cell 99: 367–376 PubMedCrossRefGoogle Scholar
  22. Marshall E (1997). Mapping away at genome patenting. Science 277: 1752–1753 PubMedCrossRefGoogle Scholar
  23. Möller NJ (1999). Integrating molecular phylogenies and developmental genetics: a Gesneriaceae case study. Chapter 17: 395–402 Google Scholar
  24. Nasu S, Suzuki J, Ohta R, Hasegawa K, Yui R, Kitazawa N and Minobe Y (2002). Search for and analysis of single nucleotide polymorphisms (SNPs) in rice (Oryza sativa, Oryza rufipogon) and establishment of SNP markers. DNA Research Int J Rapid Publ Reports Genes Genomes 9: 163–171 Google Scholar
  25. Nei M (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590 PubMedGoogle Scholar
  26. Osman A, Jordan B, Lessard PA, Muhannad N, Haron MR, Riffin NM, Sinskey AJ, Rha C and Housman DE (2003). Genetic diversity of Eurycoma longifolia inferred from single nucleotide polymorphisms. Pl Physiol 131: 1294–1301 CrossRefGoogle Scholar
  27. Picó FX, Möller M, Ouborg NJ and Cronk QCB (2002). Single Nucleotide Polymorphisms in the coding region of the developmental gene Gcyc natural populations of the relict Ramonda myconi (Gesneriaceae). Pl Biol 4: 625–629 CrossRefGoogle Scholar
  28. Rafalski JA (2002). Application of single nucleotide polymorphisms in crop genetics. Curr Opin Pl Biol 5: 94–100 CrossRefGoogle Scholar
  29. Syvänen AC (2001). Accessing genetic variation: genotyping single nucleotide polymorphism. Nature Rev Genet 2: 930–942 CrossRefGoogle Scholar
  30. Templeton AR, Shaw K, Routman E and Davis SK (1990). The genetic consequences of habitat fragmentation. Ann Missouri Bot Gard 77: 13–27 CrossRefGoogle Scholar
  31. Tenaillon M, Sawkins MC, Long AD, Gaut RL, Doebley JF and Gaut BS (2001). Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci 98: 9161–9166 PubMedCrossRefGoogle Scholar
  32. Wang CN, Möller M and Cronk QCB (2004a). Phylogenetic position of Titanotrichum oldhamii (Gesneriaceae) inferred from four different gene regions. Syst Bot 29(2): 407–407 CrossRefGoogle Scholar
  33. Wang CN, Möller M and Cronk QCB (2004b). Population genetic structure of Titanotrichum oldhamii (Gesneriaceae), a subtropical bulbiluferous plant with mixed sexual and asexual reproduction. Ann Bot 93: 201–209 CrossRefGoogle Scholar
  34. Wang L, Gao Q, Wang YZ and Lin QB (2006). Isolation and sequence analysis of two CYC-like genes, SiCYC1A and SiCYC1B, from zygomorphic and actinomorphic cultivars of Saintpaulia ionantha (Gesneriaceae). Acta Phytotax. Sin. 44(4): 353–361 CrossRefGoogle Scholar
  35. Weber JL and Wong C (1993). Mutation of human short tandem repeats. Hum Molec Genet 2: 1123–1128 PubMedCrossRefGoogle Scholar
  36. Wright S (1931). Evolution in mendelian populations. Genetics 16: 97–195 PubMedGoogle Scholar
  37. Young AG, Boyle T and Brown T (1996). The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11: 413–419 CrossRefGoogle Scholar
  38. Zhang DX and Hewitt GM (2003). Nuclear DNA analyses in geneti studies of populations: practice, problems and prospects. Molec Ecol 12: 563–584 CrossRefGoogle Scholar
  39. Zhu YL, Song QJ, Hyten DL, Tassell CPV, Matukumalli LK, Grimm DR, Hayatt SM, Fickus EW, Young ND and Cregan PB (2003). Single-nucleotide polymorphisms in soybean. Genetics 163: 1123–1134 PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.State Key Laboratory of Systematic and Evolutionary Botany, Institute of BotanyThe Chinese Academy of SciencesBeijingP.R. China
  2. 2.Department of Ecological and Environmental ScienceCollege of Life Science, Inner Mongolia UniversityInner MongoliaP.R. China

Personalised recommendations