A contribution to the ultrastructural knowledge of the pollen exine in subtribe Inulinae (Inuleae, Asteraceae)
- 102 Downloads
- 9 Citations
Abstract
To better understand the relationships within the Asteroideae and Inuleae, the structure of the pollen exine was investigated in seven genera and nine species of the subtribe Inulinae using LM, TEM and SEM. All taxa have a senecioid pattern of exine. The tectal complex consists of three main layers that differ in thickness and morphology: a tectum, a columellar layer, and a layer consisting of the basal region of the columellae. The absence or the vestigial condition of the foramina is considered as a plesiomorphy within the Asteroideae. All taxa have a complex apertural system that consists of an ecto-, a meso-, and an endoaperture. These apertures intersect respectively the tectal complex, the foot layer and the upper part of the endexine, and the inner layer of the endexine. A continuous transition among the different species of Inulinae was found for all the quantitative characters examined. This relative homogeneity of the pollen morphological characters enhances the naturality of the subtribe Inulinae.
Keywords
Pollen exine Inulinae Inuleae taxonomy cladistics electron microscopyReferences
- Anderberg A (1988). Phylogeny and reclassification of the tribe Inuleae (Asteraceae). Canad J Bot 67: 2277–2296 Google Scholar
- Anderberg A (1991a). Taxonomy and phylogeny of the tribe Inuleae (Asteraceae). Pl Syst Evol 176: 75–123 CrossRefGoogle Scholar
- Anderberg A (1991b). Taxonomy and phylogeny of the tribe Plucheae (Asteraceae). Pl Syst Evol 176: 145–177 CrossRefGoogle Scholar
- Anderberg A, Eldenäs P, Bayer RJ and Englund M (2005). Evolutionary relationships in the Asteraceae tribe Inuleae (incl. Plucheae) evidenced by DNA sequences of ndhF; with notes on the systematic positions of some aberrant genera. Organisms Diversity Evol 5: 135–146 CrossRefGoogle Scholar
- Avetisian E and Tonyan T (1975). Palynomorphology and number of chromosomes of some of the species of subtribe Centaureineae Less. (in Russian). Akad Nauk Arm SSSR 16: 45–49 Google Scholar
- Bain JF, Tyson BB and Bray DF (1997). Variation in pollen wall ultrastructure in New World Senecioneae (Asteraceae) with special reference to Packera. Canad J Bot 75: 730–735 Google Scholar
- Bayer RJ and Starr J (1998). Tribal phylogeny of the Asteraceae based on two non-coding chloroplast sequences, the trnL intron and trnL/trnF intergenic spacer. Ann Missouri Bot Gard 85: 242–256 CrossRefGoogle Scholar
- Bentham G (1873). Notes on the classification, history and geographical distribution of the Compositae. Bot J Linn Soc 13: 335–577 CrossRefGoogle Scholar
- Blackmore S (1982). A functional interpretation of Lactuceae (Compositae) pollen. Pl Syst Evol 141: 153–168 CrossRefGoogle Scholar
- Bolick MR (1978). Taxonomic, evolutionary and functional considerations of Compositae pollen ultrastructure and sculpture. Pl Syst Evol 130: 209–218 CrossRefGoogle Scholar
- Bolick MR (1981). Mechanics as an aid to interpreting pollen structure and function. Rev Palaeobot Palynol 35: 61–69 CrossRefGoogle Scholar
- Bolick MR (1991). Pollen diameter, exine thickness and ultrastructure type in the tribes of the Compositae. Comp Newsl 19: 17–21 Google Scholar
- Breitwieser I and Sampson FB (1997). Pollen characteristics of New Zealand Gnaphalieae (Compositae) and their taxonomic significance. II. TEM Grana 36: 80–95 Google Scholar
- Bremer K (1987). Tribal interrelationships of the Asteraceae. Cladistics 3: 210–253 CrossRefGoogle Scholar
- Bremer K (1994). Asteraceae – cladistics and classification. Timber Press, Oregon Google Scholar
- Diez MJ (1987) Compositae. In: Valdés B, Diez MJ, Fernández I (eds) Atlas Polinico de Andalucia Occidental. Instituto de Desarrollo Regional, Universidad de Sevilla, pp 332–357Google Scholar
- Dimon MT (1971) Étude des types polliniques des Composées echinulées du Bassin Mediterreanéen occidental. Ph.D. thesis, Presses Universitaires, MontpellierGoogle Scholar
- Eldenäs P, Anderberg AA and Källersjö M (1998). Molecular phylogenetics of the tribe Inuleae s. str. (Asteraceae), based on ITS sequences of nuclear ribosomal DNA. Pl Syst Evol 210: 159–173 CrossRefGoogle Scholar
- Erdtman G (1960). The acetolysis method. Svensk Bot Tidskr 54: 561–564 Google Scholar
- Eriksson T (1990). Reinstatment of the genus Leucoblepharis Arnott (Asteraceae-Heliantheae). Bot Jahr Syst Pflanzengeschichte und Pflanzengeographie 111: 167–191 Google Scholar
- Francisco-Ortega J, Park S-J, Santos-Guerra A, Benabid A and Jansen RK (2001). Origin and evolution of the endemic Macaronesian Inuleae (Asteraceae): evidence from the internal transcribed spacers of nuclear ribosomal DNA. Biol J Linn Soc 72: 77–97 CrossRefGoogle Scholar
- Goertzen LR, Cannone JJ, Gutell RR and Jansen RK (2003). ITS secondary structure derived from comparative analysis: implications for sequence alignment and phylogeny of the Asteraceae. Molec Phylogenet Evol 29: 216–234 PubMedCrossRefGoogle Scholar
- Guinochet M (1957). Contribution à l'étude caryologique du genre Centaurea L. (s. l.). Bull Soc Hist Nat Afr Nord 48: 282–300 Google Scholar
- Hoffmann O (1890). Compositae. In: Engler, A and Prantl, K (eds) Die Natürlichen Pflanzenfamilien 4(5), pp 87–391. Wilhelm Engelmann, Leipzig Google Scholar
- Jansen RK, Holsinger KE, Michaels HJ and Palmer JD (1990). Phylogenetic analysis of chloroplast DNA restriction site data at higher taxonomic levels: an example for the Asteraceae. Evolution 44: 2089–2105 CrossRefGoogle Scholar
- Karis P (1993). Morphological phylogenetics of the Asteraceae-Asteroideae with notes on character evolution. Pl Syst Evol 186: 69–83 CrossRefGoogle Scholar
- Karis P (1996). Phylogeny of the Asteraceae – Asteroideae revisited. In: Hind, DJN and Beentje, HP (eds) Compositae: Systematics. Proceedings of the International Compositae Conference, Kew 1994, vol 1, pp 41–47. Royal Botanic Gardens, Kew Google Scholar
- Kim KJ and Jansen RK (1995). NdhF sequence evolution and the major clades in the sunflower family. Proc Natl Acad Sci USA 92: 10379–10383 PubMedCrossRefGoogle Scholar
- Leins P (1968). Versuch einer Gliederung der Inulinae und Buphtalminae nach den Pollen Komtypen. Ber Deutsch Bot Ges 81: 498–504 Google Scholar
- Leins P (1971). Pollensystematische Studien an Inuleen. I. Tarchonanthinae, Plucheinae, Inulinae, Buphtalminae. Bot Jahrb 91: 91–146 Google Scholar
- Merxmüller H, Leins P and Roessler H (1977). Inuleae – systematic review. In: Heywood, VH, Harborne, JB, and Turner, BL (eds) The biology and chemistry of Compositae, pp 577–602. Academic, London Google Scholar
- Ortiz S and Pereira Coutinho A (2001). Achyrothalamus reduced to Erythrocephalum (Asteraceae, Mutisieae). Taxon 50: 389–403 CrossRefGoogle Scholar
- Panero JL and Funk V (2002). Toward a phylogenetic subfamilial classification for the Compositae (Asteraceae). Proc Biol Soc Washington 115: 909–922 Google Scholar
- Pereira Coutinho A (2002) Palinologia das tribos Inuleae Cass. (sensu stricto), Gnaphalieae Benth., Helenieae Benth. e Heliantheae Cass. (Asteraceae) em Portugal Continental e Açores. Ph.D. thesis, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, CoimbraGoogle Scholar
- Poljakov PP (1967). Systematika i Prosxozdenie Sloznocvetnyx. Akad Sci Kazakhstan, Nauka Alma Ata Google Scholar
- Praglowski J and Grafström E (1980). The pollen morphology of the tribe Calenduleae with reference to taxonomy. Bot Not 133: 177–188 Google Scholar
- Punt W, Blackmore S, Nilsson S and Le Thomas A (1994). Glossary of pollen and spore terminology. LPP Contributions Series No. 1. LPP Foundation, Utrecht Google Scholar
- Reis I and Ferreira A (1981). Note on the structure of the exine of Eupatorieae (Compositae). Bull Torr Bot Club 108: 409–412 CrossRefGoogle Scholar
- Salgado-Labouriau ML (1982). On cavities in spines of Compositae pollen. Grana 21: 97–102 CrossRefGoogle Scholar
- Skvarla JJ and Larson DA (1965). An electron microscopic study of pollen morphology in the Compositae with special reference to the Ambrosiinae. Grana Palynol 6: 210–269 CrossRefGoogle Scholar
- Skvarla JJ and Turner BL (1966). Systematic implications from electron microscopic studies of Compositae pollen – a review. Ann Missouri Bot Gard 53: 220–257 CrossRefGoogle Scholar
- Skvarla JJ, Turner BL, Patel VC and Tomb AS (1977). Pollen morphology in the Compositae and in morphologically related families. In: Heywood, VH, Harborne, JB, and Turner, BL (eds) The biology and chemistry of Compositae, pp 141–265. Academic, London Google Scholar
- Skvarla JJ, De Vore ML and Chissoe WF (2005). Lophate sculpture of Vernonieae (Compositae) pollen. Rev Palaeobot Palynol 133: 51–68 CrossRefGoogle Scholar
- Stix E (1960). Pollen morphologische Untersuchungen an Compositen. Grana Palynol 2: 41–126 Google Scholar
- Tormo Molina R and Ubera Jiménez JL (1990). The apertural system of pollen grains in Anthemideae and Cardueae (Compositae) with special reference to the Mesoaperture. Rev Palaeobot Palynol 62: 1–9 CrossRefGoogle Scholar
- Tormo Molina R, Ubera Jiménez JL (1995) Tipos polínicos de la Tribu Cardueae en la Península Ibérica. Monografias del Jardín Botánico de Córdoba, vol 2. Tipografia Católica, S. C. A., CórdobaGoogle Scholar
- Wagenitz G (1955). Pollenmorphologie und Systematik in der Gattung Centaurea L. s. l. Flora 142: 213–279 Google Scholar
- Wagenitz G (1976). Systematics and phylogeny of the Compositae (Asteraceae). Pl Syst Evol 125: 29–46 CrossRefGoogle Scholar
- Wagstaff SJ and Breitwieser I (2002). Phylogenetic relationships of New Zealand Asteraceae inferred from ITS sequences. Pl Syst Evol 231: 203–224 CrossRefGoogle Scholar
- Zavada M and De Villiers S (2000). Pollen of the Asteraceae from the Paleocene-Eocene of South Africa. Grana 39: 39–45 CrossRefGoogle Scholar