Plant Systematics and Evolution

, Volume 267, Issue 1–4, pp 215–253 | Cite as

Evolutionary history and systematics of Acer section Acer – a case study of low-level phylogenetics

  • G. W. Grimm
  • T. Denk
  • V. Hemleben


The phylogenetic and systematic position of all species of Acer section Acer from North America, East Asia, and western Eurasia are evaluated using various splits-based networks (distance networks, bipartition networks), ITS motif analysis, and morphology. Molecular analyses are based on 276 ITS clones obtained from 101 specimens collected mainly from natural stands. The large sample size ensures to cover sufficiently inter- and intraspecific ITS variability of this group. Formerly recognised species are generally supported by ITS data and morphology; the combination of molecular (ITS) and morphological criteria allows defining seven (supraspecific) taxonomic groups prior to a phylogenetic reconstruction. Phylogenetic signals captured in modern ITS sequences are partly incompatible but clearly suggest that Acer section Acer underwent three major radiations. Horizontal gene flow is indicated between ancestors of extant taxa that are isolated at present times. The level of ITS derivation can be estimated and corresponds to levels of morphological differentiation and (palaeo-) biogeographical patterns. Based on our results we question the potential of cladistic approaches to infer low-level evolution in an adequate manner and demonstrate that speciation in members of Acer section Acer is not generally linked to cladogenesis. The data and methodologies provided here allow to trace pathways of low-level evolution and to analyse such data sets with a less restricted (non-dichotomous) dynamic concept.


bipartition networks fossils internal transcribed spacer intraindividual divergence molecular evolution molecular taxonomy morphology motif analysis phylogenetic networks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

606_2007_572_MOESM1_ESM.pdf (460 kb)
Supplementary material
606_2007_572_MOESM2_ESM.pdf (137 kb)
Supplementary material


  1. Bandelt H-J and Dress AWM (1992a). A canonical decomposition theory for metrics on a finite set. Adv Math 92: 622–628 CrossRefGoogle Scholar
  2. Bandelt H-J and Dress AWM (1992b). Split decomposition: a new and useful approach to phylogenetic analysis of distance data. Molec Phylogent Evol 1: 242–252 CrossRefGoogle Scholar
  3. Bryant D, Moulton V (2002) NeighborNet: an agglomerative method for the construction of planar phylogenetic networks. In: Guigó R, Gusfield D (eds) Algorithms in bioinformatics, Second International Workshop, WABI. LNCS Vol. 2452. Springer Rome, Berlin, Heidelberg, New York, 375–391Google Scholar
  4. Bryant D and Moulton V (2004). Neighbor-net: an agglomerative method for the construction of phylogenetic networks. Molec Biol Evol 21: 255–265 PubMedCrossRefGoogle Scholar
  5. Crane PR, Manchester SR and Dilcher D (1990). A preliminary survey of fossil leaves and well-preserved reproductive structures from the Sentinel Butte Formation (Paleocene) near Almont, North Dakota. Fieldiana Geol, New Series 20: 1–63 Google Scholar
  6. Cronn R, Cedroni M, Haselkorn T, Grover C and Wendel JF (2002). PCR-mediated recombination in amplification products derived from polyploid cotton. Theor Appl Genet 104: 482–489 PubMedCrossRefGoogle Scholar
  7. de Jong PC (1994). Taxonomy and reproductive biology of maples. In: van Gelderen DM, de Jong PC and Oterdoom HJ (eds) Maples of the world, pp 69–104. Timber Press, Portland Google Scholar
  8. Delendick TJ (1981). A systematic review of the Aceraceae. City University of New York, New York Google Scholar
  9. Delendick TJ (1982). Infrageneric nomenclature in Acer (Aceraceae). Brittonia 34: 81–84 CrossRefGoogle Scholar
  10. Denk T, Grimm G, Stögerer K, Langer M and Hemleben V (2002). The evolutionary history of Fagus in western Eurasia: Evidence from genes, morphology and the fossil record. Pl Syst Evol 232: 213–236 CrossRefGoogle Scholar
  11. Denk T and Grimm GW (2005). Phylogeny and biogeography of Zelkova (Ulmaceae sensu stricto) as inferred from leaf morphology, ITS sequence data and the fossil record. Bot J Linn Soc 147: 129–157 CrossRefGoogle Scholar
  12. Denk T, Grimm GW and Hemleben V (2005a). Patterns of molecular and morphological differentiation in Fagus: implications for phylogeny.. Amer J Bot 92: 1006–1016 Google Scholar
  13. Denk T, Grímsson F and Kvaček Z (2005b). The Miocene floras of Iceland and their significance for late Cainozoic North Atlantic biogeography. Bot J Linn Soc 149: 369–417 CrossRefGoogle Scholar
  14. Felsenstein J (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 CrossRefGoogle Scholar
  15. Flora Europaea (1998–2006) Flora Europaea online database (excerpt from the PANDORA taxonomic data base system). Maintained by Royal Botanic Garden Edinburgh. URL: Scholar
  16. Fukarek P and Celjo A (1959). Hybrides entre Acer pseudoplatanus et A heldreichii. Sumarstvo 12: 543–548 Google Scholar
  17. Gebhardt C, Ritter E, Debener T, Schachtschabel U, Walkemeier B, Uhrig H and Salamini F (1989). RFLP analysis and linkage mapping in Solanum tuberosum. Theor Appl Genet 78: 65–75 CrossRefGoogle Scholar
  18. Grimm GW (2003) Tracing the mode and speed of molecular Evolution - A case study of genus Acer L and Fagus L. Eberhard-Karls University, Tübingen URN: urn:nbn:de:bsz:21-opus-15744Google Scholar
  19. Grimm GW, Schlee M, Komarova NY, Volkov R A, Hemleben V (2005) Low-level taxonomy and intrageneric evolutionary trends in higher plants. In: Endress PK, Lüttge U, Parthier B (eds) From plant taxonomy to evolutionary biology. Nova Acta Leopoldina NF, Vol. 92, No. 342. Wissenschaftl. Verlagsges. mbH. Stuttgart, pp 129–145Google Scholar
  20. Grimm GW, Renner SS, Stamatakis A and Hemleben V (2006). A nuclear ribosomal DNA phylogeny of Acer inferred with maximum likelihood, splits graphs, and motif analyses of 606 sequences. Evol Bioinform 2: 279–294 Google Scholar
  21. Grimm GW, Denk T, Hemleben V (2007) Coding of intraspecific nucleotide polymorphisms: a tool to resolve reticulate evolutionary relationships in the ITS of beech trees (Fagus L., Fagaceae). Sys Biodiv 5Google Scholar
  22. GRIN (2006) Germplasm Resources Information Network - (GRIN) [Online Database]. Maintained by USDA, ARS, National Genetic Resources Program. URL: http://www.ars-grin.-gov2/cgi-bin/npgs/html/index.plGoogle Scholar
  23. Hemleben V, Ganal M, Gerstner J, Schiebel K, Torres RA (1988) Organization and length heterogeneity of plant ribosomal RNA genes. In: Kahl G (ed) Architecture of eukaryotic genes. VCH Verlagsgesellschaft mbH, Weinheim, pp 371–383Google Scholar
  24. Hershkovitz MA and Lewis LA (1996). Deep-level diagnostic value of the rDNA-ITS region. Molec Biol Evol 13: 1276–1295 PubMedGoogle Scholar
  25. Hershkovitz MA and Zimmer EA (1996). Conservation patterns in angiosperm rDNA ITS2 sequences. Nucl Acids Res 24: 2857–2867 PubMedCrossRefGoogle Scholar
  26. Hershkovitz MA, Zimmer EA and Hahn WJ (1999). Ribosomal DNA sequences and angiosperm systematics. In: Hollingsworth, PM, Bateman, R M, and Gornall, RJ (eds) Molecular systematics and plant evolution, pp 268–326. Taylor & Francis, London Google Scholar
  27. Huelsenbeck JP and Ronquist F (2001). MrBayes: Bayesian inference of phylogeny. Bioinformatics 17: 754–755 PubMedCrossRefGoogle Scholar
  28. Huelsenbeck JP, Ronquist F, Nielsen R and Bollback JP (2001). Evolution – Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294: 2310–2314 PubMedCrossRefGoogle Scholar
  29. Huson DH (1998). SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 14: 68–73 PubMedCrossRefGoogle Scholar
  30. Huson DH and Bryant D (2006). Application of phylogenetic networks in evolutionary studies. Molec Biol Evol 23: 254–267 PubMedCrossRefGoogle Scholar
  31. ITIS (2006) Integrated Taxonomic Information System - (ITIS) [Online Database]. Maintainedby ITIS Organisation. URL: Scholar
  32. Kimura M (1983). The neutral theory of molecular evolution. Cambridge University Press, Cambridge Google Scholar
  33. Knobloch E (1998). Der pliozäne Laubwald von Willershausen am Harz (Mitteleuropa). Documenta naturae 120: 1–302 Google Scholar
  34. Kolakovski AA and Ratiani NK (1967). The Pliocene Flora of Maly Shirak. Trans Bot Gard Sukhumi 16: 30–71 Google Scholar
  35. Komarova NY, Grabe T, Huigen DJ, Hemleben V and Volkov R A (2004). Organization, differential expression and methylation of rDNA in artificial Solanum allopolyploids.. Pl Molec Biol 56: 439–463 CrossRefGoogle Scholar
  36. Kovar-Eder J, Kvacek Z and Ströbitzer-Hermann M (2004). The Miocene flora of Parschlug (Styria, Austria) – revision and synthesis. Ann Naturhist Mus Wien 105A: 45–159 Google Scholar
  37. Kvacek Z, Velitzelos D, Velitzelos E (2002) Late Miocene Flora of Vegora, Macedonia, N Greece. Korali, AthensGoogle Scholar
  38. Kvaček Z and Walther H (2004). Oligocene flora of Bechlejovice at Decí from the neovolcanic area of the reské stredohorí Mountains, Czech Republic. Acta Mus Nat Pragae, Ser B - Hist Nat 60: 9–60 Google Scholar
  39. Lim KY, Kovarik A, Matyasek R, Bezdek M, Lichtenstein CP and Leitch AR (2000). Gene conversion of ribosomal DNA in Nicotiana tabacum is associated with undermethylated, decondensed and probably active gene units. Chromosoma 109: 161–172 PubMedCrossRefGoogle Scholar
  40. Mai HD (1983). Studien an Endokarpien europäischer und westasiatischer Arten der Gattung Acer L. (Aceraceae). Gleditschia 10: 37–57 Google Scholar
  41. Mai HD (1984). Die Endokarpien bei der Gattung Acer L. Eine biosystematische Studie. Gleditschia 11: 17–64 Google Scholar
  42. Mai HD (1995). Tertiäre Vegetationsgeschichte Europas. Gustav Fischer Verlag, Jena, Stuttgart, New York Google Scholar
  43. Mai HD and Walther H (1978). Die Floren der Haselbacher Serie im Weisselster-Becken (Bezirk Leipzig, DDR). Ab Staatl Mus ineral Geol Dresden 28: 1–200 Google Scholar
  44. Mai HD and Walther H (1991). Die oligozänen und untermiozänen Floren NW-Sachsens und des Bitterfelder Raumes. Abh Staatl Mus Mineral Geol Dresden 38: 1–230 Google Scholar
  45. Manchester SR (1999). Biogeographical relationships of North American Tertiary floras. Ann Missouri Bot Gard 86: 472–522 CrossRefGoogle Scholar
  46. Massalongo A, Scarabelli G (1859) Studii sulla flora fossile e geologica stratigrafica del Senigalliese, Imola.Google Scholar
  47. Minin V, Abdo Z, Joyce P and Sullivan J (2003). Performance-based selection of likelihood models for phylogeny estimation. Syst Biol 52: 674–683 PubMedCrossRefGoogle Scholar
  48. Müller KF (2005). The efficiency of different search strategies for estimating parsimony, jackknife, bootstrap and Bremer support. BMC Evol Biol 5: 58 PubMedCrossRefGoogle Scholar
  49. Nylander JAA (2004) MrModeltest. 2.1 ed. Uppsala: Program distributed by the author. Evolutionary Biology Centre, Uppsala UniversityGoogle Scholar
  50. Ogata K (1967). A systematic study of the genus Acer. Bull Tokyo Imp Univ Forest 63: 89–206 Google Scholar
  51. Pfosser MF, Guzy-Wróbelska J, Sun B-Y., Stuessy TF, Sugawara T and Fujii N (2002). The origin of species of Acer (Sapindaceae) endemic to Ullung Island. Korea Syst Bot 27: 351–367 Google Scholar
  52. Pojárkova AI (1933). Botanico-geographical survey of the maples of the USSR in connection with the history of the whole genus Acer L. Acta Inst Bot Acad Sci USSR, Ser. 1 1: 225–374 Google Scholar
  53. Rannala B and Yang Z (1996). Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference. J Molec Evol 43: 304–311 PubMedGoogle Scholar
  54. Ronquist F and Huelsenbeck JP (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574 PubMedCrossRefGoogle Scholar
  55. Sachse M (2004). Die Neogene Mega- und Mikroflora von Makrilia auf Kreta und ihre Aussagen zur Klima- und Vegetationsgeschichte des östlichen Mittelmeergebietes. Flora Tertiaria Mediterranea 6: 1–323 Google Scholar
  56. Saporta G (1867). Études sur la végétation du sud-est de la France á l'époque tertiaire, 3. Ann Sc Nat, Bot 5: 5–136 Google Scholar
  57. Ströbitzer-Hermann M (2002) Results of cuticularanalytic, systematic-taxonomic, stratigraphic and palaeoecological investigations in fossil Acer-species. 6th European Palaeobotany-Palynology Conference. Athens, Greece, 165–166Google Scholar
  58. Ströbitzer-Hermann M, Kovar-Eder J and Vitek E (2000). Kutikularanalytische Untersuchungen an Acer heldreichii Orph. ex Boiss. ssp. heldreichii und ssp. trautvetteri (Medw.) Murray sowie Acer pseudoplatanus L. Ann Naturhist Mus Wien 102B: 409–416 Google Scholar
  59. Ströbitzer-Hermann M and Kovar-Eder J (2002). Acer L.: Some stratigraphically relevant species and their importance as potenital indicators of vegetation conditions. Acta Univ Carol - Geol 46: 101–106 Google Scholar
  60. Swofford DL (2002). PAUP*: Phylogenetic analysis using parsimony (* and other methods). 4th ed. National Illinois History Survey, Champaign Google Scholar
  61. Tanai T (1983). Revisions of Tertiary Acer from East Asia. J Fac Sc, Hokkaido Uni, Ser. IV: Geol Mineral 20: 291–390 Google Scholar
  62. Torres RA, Ganal. M and Hemleben V (1990). GC balance in the internal transcribed spacers ITS1 and ITS2 of nuclear ribosomal DNA. J Molec Evol 30: 170–181 PubMedCrossRefGoogle Scholar
  63. van Gelderen DM, de Jong PC, and Oterdoom HJ (1994). Maples of the world. Timber Press, Portland Google Scholar
  64. Volkov RA, Borisjuk NV, Panchuk I I, Schweizer D and Hemleben V (1999). Elimination and rearrangement of parental rDNA in the allotetraploid Nicotiana tabacum. Molec Biol Evol 16: 311–320 PubMedGoogle Scholar
  65. Volkov R A, Komarova NY, Hemleben V (2007) Ribosomal DNA and plant hybrids: Inheritance, rearrangement, expression. Syst Biodiv 5Google Scholar
  66. Watters H (1968). Acer L. In: Tutin, TG, Heywood, VH, Burges, NA, Moore, DM, Valentine, DH, Walters, SM and Webb, DA (eds) Flora Europea 2. Rosaceae to Umbelliferace, pp 238–239. Cambridge University Press, Cambridge Google Scholar
  67. Walther H (1972). Studien über tertiäre Acer Mitteleuropas. Abhandl Staatl Mus Mineral Geol Dresden 19: 1–309 Google Scholar
  68. Walther H (1999). Die Tertiärflora von Kleinsaubernitz bei Bauzen. Palaeontographica B 249: 63–174 Google Scholar
  69. Wolfe JA and Tanai T (1987). Systematics, phylogeny and distribution of Acer in the Cenozoic of western North America. J Fac Sc, Hokkaido Univ, Ser. IV: Geol Mineral 22: 1–246 Google Scholar
  70. Yaltirik F (1967). Contribution to the taxonomy of woody plants in Turkey. Notes Roy Bot Gard, Edinburgh 28: 9–10 Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.Institute of GeosciencesEberhard-Karls UniversityTübingenGermany
  2. 2.Department of PalaeobotanyMuseum of Natural HistoryStockholmSweden
  3. 3.General Genetics Department, Centre of Plant Molecular BiologyEberhard-Karls UniversityTübingenGermany

Personalised recommendations