Plant Systematics and Evolution

, Volume 268, Issue 1–4, pp 29–43 | Cite as

Sorghum resolved as a distinct genus based on combined ITS1, ndhF and Adh1 analyses

  • S. L. Dillon
  • P. K. Lawrence
  • R. J. Henry
  • H. J. Price
Article

Abstract

Recent studies on Sorghum have attempted to determine the genetic relationships between the 17 Australian native Sorghum species and the cultivated species, with several studies contradictory in their findings. To resolve these issues within Sorghum, a detailed investigation of the phylogenetic relationships was made. The alcohol dehydrogenase 1 gene (Adh1) from 25 Sorghum species and Cleistachne sorghoides was sequenced. Independent analyses of the Adh1 data, and combined analyses of the Adh1, ITS1 and ndhF data were carried out. All Sorghum species were resolved to a distinct clade with 100% support. Within Sorghum, the Eu-sorghum species were resolved to a strongly supported lineage that included the Australian native species S. macrospermum and S. laxiflorum. All other Australian species were resolved to a second strongly supported lineage. Sorghum laxiflorum and S. macrospermum have again been identified as the Australian species most closely related to cultivated sorghum. Analysis based on three genes has shown that the 25 Sorghum species form a distinct monophyletic group, and that there is little evidence to support the recent taxonomic revision of these species into three separate genera.

Keywords

Wild sorghum phylogeny germplasm Poaceae Andropogoneae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brunner S, Fengler K, Morgante M, Tingey S and Rafalski A (2005). Evolution of DNA sequence nonhomologies among maize inbreds. Pl Cell 17: 343–360 CrossRefGoogle Scholar
  2. Burge C and Karlin S (1997). Prediction of complete gene structures in human genomic DNA. J Molec Biol 268: 78–94 PubMedCrossRefGoogle Scholar
  3. Burge CB and Karlin S (1998). Finding the genes in genomic DNA. Cur Opin Struct Biol 8: 346–354 CrossRefGoogle Scholar
  4. Charlesworth D, Liu FL and Zhang L (1998). The evolution of the alcohol dehydrogenase gene family by loss of introns in plants of the genus Leavenworthia (Brassicaceae). Molec Biol Evol 15: 552–559 PubMedGoogle Scholar
  5. Chittenden LM, Schertz KF, Lin YR, Wing RA and Paterson AH (1994). A detailed RFLP map of Sorghum bicolor x S. propinquum, suitable for high-density mapping, suggests ancestral duplication of Sorghum chromosomes or chromosomal segments. Theor Appl Genet 87: 925–933 CrossRefGoogle Scholar
  6. Clegg MT, Cummings MP and Durbin ML (1997). The evolution of plant nuclear genes. Proc Natl Acad Sci USA 94: 7791–7798 PubMedCrossRefGoogle Scholar
  7. Cummings MP and Clegg MT (1998). Nucleotide sequence diversity at the alcohol dehydrogenase 1 locus in wild barley (Hordeum vulgare ssp. spontaneum): An evaluation of the background selection hypothesis. Proc Natl Acad Sci USA 95: 5637–5642 PubMedCrossRefGoogle Scholar
  8. Dennis ES, Gerlach WL, Pryor AJ, Bennetzen JL, Inglis A, Llewellyn D, Sachs MM, Ferl RJ and Peacock WJ (1984). Molecular analysis of the alcohol dehydrogenase (Adh1) gene of maize. Nucleic Acids Res 12: 3983–4000 PubMedCrossRefGoogle Scholar
  9. Dennis ES, Sachs MM, Gerlach WL, Finnegan EJ and Peacock WJ (1985). Molecular analysis of the alcohol dehydrogenase 2 (Adh2) gene of maize. Nuleic Acids Res 13: 727–743 CrossRefGoogle Scholar
  10. de Wet JMJ (1978). Systematics and evolution of Sorghum section Sorghum (Gramineae). Amer J Bot 65: 477–484 CrossRefGoogle Scholar
  11. Dillon SL, Lawrence PK and Henry RJ (2001). The use of ribosomal ITS to determine phylogenetic relationships within Sorghum. Pl Syst Evol 230: 97–110 CrossRefGoogle Scholar
  12. Dillon SL, Lawrence PK, Henry RJ, Ross L, Price HJ and Johnston JS (2004). Sorghum laxiflorum and S. macrospermum, the Australian native species most closely related to the cultivated S. bicolor based on ITS1 and ndhF sequence analysis of 25 Sorghum species. Pl Syst Evol 249: 233–246 CrossRefGoogle Scholar
  13. Duvall MR and Doebley JF (1990). Restriction site variation in the chloroplast genome of Sorghum (Poaceae). Syst Bot 15: 472–480 CrossRefGoogle Scholar
  14. Ellstrand NC, Lee JM and Foster KW (1983). Alcohol dehydrogenase isozymes in grain sorghum (Sorghum bicolor): evidence for a gene duplication. Biochem Gen 21: 147–54 CrossRefGoogle Scholar
  15. Farris JS, Källersjö M, Kluge AG and Bult C (1995). Constructing a significance test for incongruence. Syst Biol 44: 570–572 CrossRefGoogle Scholar
  16. Freeling M (1973). Simultaneous induction by anaerobiosis of 2,4-D of multiple enzymes specified by two unlinked genes: differential ADH1-ADH2 expression in maize. Molec Gen Genet 127: 215–217 PubMedCrossRefGoogle Scholar
  17. Freeling M and Schwartz D (1973). Genetic relationships between the multiple alcohol dehydrogenases of maize. Biochem Genet 8: 27–36 PubMedCrossRefGoogle Scholar
  18. Freeling M and Bennett DC (1985). Maize Adh1. Annual Rev Genet 19: 297–323 Google Scholar
  19. Garber ED (1950). Cytotaxonomic studies in the genus Sorghum. Univ Cal Pub Bot 23: 283–361 Google Scholar
  20. Gaut BS and Clegg MT (1991). Molecular evolution of the alcohol dehydrogenase 1 in members of the grass family. Proc Natl Acad Sci USA 88: 2060–2064 PubMedCrossRefGoogle Scholar
  21. Gaut BS and Clegg MT (1993a). Molecular evolution of the Adh1 locus in the genus Zea. Proc Natl Acad Sci USA 90: 5095–5099 CrossRefGoogle Scholar
  22. Gaut BS and Clegg MT (1993b). Nucleotide polymorphism in the Adh1 locus of pearl millet (Pennisetum glaucum) (Poaceae). Genetics 135: 1091–1097 Google Scholar
  23. Gaut BS and Doebley JF (1997). DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci USA 94: 6809–6814 PubMedCrossRefGoogle Scholar
  24. Gaut BS, Peek AS, Morton BR and Clegg MT (1999). Patterns of genetic diversification within the Adh gene family in the grasses (Poaceae). Molec Biol Evol 16: 1086–1097 PubMedGoogle Scholar
  25. Gottlieb LD (1982). Conservation and duplication of isozymes in plants. Science 216: 373–380 PubMedCrossRefGoogle Scholar
  26. Gu MH, Ma HT and Liang GH (1984). Karyotype analysis of seven species in the genus Sorghum. J Heredity 75: 196–202 Google Scholar
  27. Hackel E (1889). Andropogoneae. Monographiae Phanerogamarum. Sumptibus G. Masson, Paris Google Scholar
  28. Hodnett GL, Burson BL, Rooney WL, Dillon SL and Price HJ (2005). Pollen–pistil interactions result in reproductive isolation between Sorghum bicolor and divergent Sorghum species. Crop Sci 45: 1403–1409 CrossRefGoogle Scholar
  29. Ilic K, San Miguel PJ and Bennetzen JL (2003). A complex history of rearrangement in an orthologous region of the maize, sorghum, and rice genomes. Proc Natl Acad Sci USA 100: 12265–12270 PubMedCrossRefGoogle Scholar
  30. Lazarides M, Hacker JB and Andrew MH (1991). Taxonomy, cytology and ecology of indigenous Australian Sorghums (Sorghum Moench: Andropogoneae: Poaceae). Austral Syst Bot 4: 591–635 CrossRefGoogle Scholar
  31. Magoon ML and Shambulingappa KG (1961). Karyomorphology of Sorghum propinquum and its bearing on the origin of 40-chromosome Sorghum. Chromosoma 12: 460–465 PubMedCrossRefGoogle Scholar
  32. Miyashita NT, Kawabe A and Terauchi R (1998). Intra- and inter-specific DNA variation and codon bias of the alcohol dehydrogenase (Adh) locus in Arabidopsis species. Molec Biol Evol 15: 1420–1429 PubMedGoogle Scholar
  33. Morton BR, Gaut BS and Clegg MT (1996). Evolution of alcohol dehydrogenase genes in the Palm and Grass families. Proc Natl Acad Sci USA 93: 11735–11739 PubMedCrossRefGoogle Scholar
  34. Osterman JC and Dennis ES (1989). Molecular analysis of the ADH1-Cm allele of maize. Pl Molec Biol 13: 203–212 CrossRefGoogle Scholar
  35. Paterson AH, Schertz KF, Lin YR, Liu SC and Chang YL (1995). The weediness of wild plants: molecular analysis of genes influencing dispersal and persistence of johnsongrass, Sorghum halepense (L.) Pers. Proc Natl Acad Sci USA 92: 6127–6131 PubMedCrossRefGoogle Scholar
  36. Perry DJ and Furnier GR (1996). Pinus banksiana has at least seven expressed alcohol dehydrogenase genes in two linked groups. Proc Natl Acad Sci USA 93: 13020–13023 PubMedCrossRefGoogle Scholar
  37. Price HJ, Dillon SL, Hodnett G, Rooney WL, Ross L and Johnston JS (2005a). Genome evolution in the genus Sorghum (Poaceae). Ann Bot 95: 219–227 CrossRefGoogle Scholar
  38. Price HJ, Hodnett GL, Burson BL, Dillon SL and Rooney WL (2005b). A Sorghum bicolor x S. macrospermum hybrid recovered by embryo rescue and culture. Austral J Bot 53: 579–582 CrossRefGoogle Scholar
  39. Rychlik W and Rhoads RE (1989). A computer program for choosing optimal oligonucleotides for filter hybridization, sequencing and in vitro amplification of DNA. Nucleic Acids Res 17: 8543–8551 PubMedCrossRefGoogle Scholar
  40. Seelanan T, Brubaker CL, Stewart J Mc D, Craven LA and Wendel JF (1999). Molecular systematics of Australian Gossypium section Grandicalyx (Malvaceae). Syst Bot 24: 183–208 CrossRefGoogle Scholar
  41. Small RL, Ryburn JA, Cronn RC, Seelanan T and Wendel JF (1998). The tortoise and the hare: Choosing between noncoding plastome and nuclear Adh sequences for phylogeny reconstruction in a recently diverged plant group. Amer J Bot 85: 1301–1315 CrossRefGoogle Scholar
  42. Small RL, Ryburn JA, Cronn RC, Seelanan T and Wendel JF (1999). Low levels of nucleotide diversity at homoeologous Adh loci in allotetraploid cotton (Gossypium L.). Molec Biol Evol 16: 491–501 PubMedGoogle Scholar
  43. Small RL and Wendel JF (2000a). Phylogeny, duplication and intraspecific variation of Adh sequences in new world diploid cottons (Gossypium L., Malvaceae). Molec Phylogenet Evol 16: 73–84 CrossRefGoogle Scholar
  44. Small RL and Wendel JF (2000b). Copy number lability and evolutionary dynamics of the Adh gene family in diploid and tetraploid cotton (Gossypium). Genetics 155: 1913–1926 Google Scholar
  45. Small RL and Wendel JF (2002). Differential evolutionary dynamics of duplicated paralogous Adh loci in allotetraploid cotton (Gossypium). Molec Biol Evol 19: 597–607 PubMedCrossRefGoogle Scholar
  46. Snowden J (1935). A classification of the cultivated Sorghums. Bulletin of Miscellaneous Information, No 5. Royal Botanic gardens, Kew, England, 221–255 Google Scholar
  47. Spangler R, Zaitchik B, Russo E and Kellogg E (1999). Andropogoneae evolution and generic limits in Sorghum (Poaceae) using ndhF sequences. Syst Bot 24: 267–281 CrossRefGoogle Scholar
  48. Spangler RE (2003). Taxonomy of Sarga, Sorghum and Vacoparis (Poaceae: Andropogoneae). Austral Syst Bot 16: 279–299 CrossRefGoogle Scholar
  49. Stenhouse JW, Prasada Rao KE, Gopal Reddy V and Appa Rao S (1997). Sorghum. In: Fuccillo, D, Sears, L, and Stapleton, P (eds) Biodiversity in Trust, pp 292–308. Cambridge University Press, Cambridge Google Scholar
  50. Sun Y, Skinner DZ, Liang GH and Hulbert SH (1994). Phylogenetic analysis of Sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA. Theor Appl Genet 89: 26–32 CrossRefGoogle Scholar
  51. Swofford DL (2002). PAUP. Phylogenetic Analysis Using Parsimony (and other methods). Sinauer Associates, Sunderland, Massachusetts Google Scholar
  52. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F and Higgins DG (1997). The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 PubMedCrossRefGoogle Scholar
  53. Tikhonov AP, San Miguel PJ, Nakajima Y, Gorenstein NM, Bennetzen JL and Avramova Z (1999). Colinearity and its exceptions in orthologous adh regions of maize and sorghum. Proc Nat Acad Sci USA 96: 7409–7414 PubMedCrossRefGoogle Scholar
  54. Tikhonov AP, Bennetzen JL and Avramova ZV (2000). Structural domains and matrix attachment regions along colinear chromosomal segments of maize and sorghum. Pl Cell 12: 249–264 Google Scholar
  55. Trick M, Dennis ES, Edwards KJR and Peacock WJ (1988). Molecular analysis of the alcohol dehydrogenase gene family of barley. Pl Molec Biol 11: 147–160 CrossRefGoogle Scholar
  56. USDA ARS (2006) National Genetic Resources program. Germplasm Resources Information Network-(GRIN). [Online Database] National Germplasm Resources laboratory, Beltsville, Maryland. http://www.ars-grin.gov/cgi-bin/npgs/htmlGoogle Scholar
  57. Wu T-P (1979). Cytological and morphological studies on Sorghum roxburghii, S. propinquum and their F1 hybrid. Proc Natl Sci Council ROC 3: 291–298 Google Scholar
  58. Wu T-P (1990). Sorghum macrospermum and its relationship to the cultivated species S. bicolor. Cytologia 55: 141–151 Google Scholar
  59. Wu T-P (1993). Cytological and morphological relationships between Sorghum laxiflorum and S. bicolor. J Heredity 84: 484–489 Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • S. L. Dillon
    • 1
  • P. K. Lawrence
    • 1
  • R. J. Henry
    • 2
  • H. J. Price
    • 3
  1. 1.Queensland Department of Primary Industries and FisheriesAustralian Tropical Crops and Forages CollectionBiloelaAustralia
  2. 2.Centre for Plant Conservation GeneticsSouthern Cross UniversityLismoreAustralia
  3. 3.Formerly of the Department of Soil & Crop Sciences, Texas Agricultural Experiment StationTexas A&M UniversityCollege StationUSA

Personalised recommendations