Advertisement

Plant Systematics and Evolution

, Volume 269, Issue 1–2, pp 89–105 | Cite as

Flow cytometric and cytogenetic analyses of Iberian Peninsula Festuca spp.

  • J. Loureiro
  • D. Kopecký
  • S. Castro
  • C. Santos
  • P. Silveira
Article

Abstract

Festuca L. has an important diversification centre in the Iberian Peninsula. We used chromosome counting, fluorescence (FISH) and genomic in situ hybridization (GISH), and DNA flow cytometry (FCM) to clarify the taxonomic position of several taxa, to search for phylogenetic relationships and to assess the extent and pattern of genome variation in fescues. The chromosome number of Festuca duriotagana var. barbata is determined for the first time and new ploidy level estimations are given for F. rothmaleri and F. summilusitana. In the latter species, besides the reported decaploid level, dodecaploidy was found in some populations, which points to the existence of an unrecognized taxon. Moreover, these differences were confirmed by FCM and a high positive correlation was found with the type of substrate where F. summilusitana was growing. For each section, a decrease of genome size with increase of polyploidy was observed. In general, in situ hybridization techniques failed to reveal phylogenetic relationships among the selected species. In FISH, a variation in the number of rDNA sites was observed in some species. GISH results indicate that F. henriquesii is not a progenitor of the studied polyploid species.

Keywords

Fescues Festuca flow cytometry genome size Iberian Peninsula karyology in situ hybridization molecular cytogenetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Bermani AK, Catalan P and Stace CA (1992). A new circumscription of Festuca trichophylla (Gaudin) K. Richter (Gramineae). An Jard Bot Anales Jard. Bot. Madrid 50: 209–220 Google Scholar
  2. Anonymous (2006) Plano Sectorial da Rede Natura 2000. ICN. Website: http://www.icn.pt/psrn2000/caracterizacao_valores_naturais/flora/Festuca%20duriotagana.pdfGoogle Scholar
  3. Arumuganathan K, Tallury SP, Fraser ML, Bruneau AH and Qu R (1999). Nuclear DNA content of thirteen turfgrass species by flow cytometry. Crop Sci 39: 1518–1521 Google Scholar
  4. Bennett MD and Leitch IJ (2005). Nuclear DNA amounts in Angiosperms: progress, problems and prospects. Ann Bot 95: 45–90 PubMedCrossRefGoogle Scholar
  5. Bennett MD, Smith JB and Smith RIL (1982). DNA Amounts of angiosperms from the Antarctic and South Georgia. Environ Exp Bot 22: 307–318 CrossRefGoogle Scholar
  6. Cebolla Lozano C and Rivas Ponce MA (2003). Catálogo del género Festuca L. (Poaceae) en la Península Ibérica. Candollea 58: 189–213 Google Scholar
  7. Ceccarelli M, Falistocco E and Cionini PG (1992). Variation of genome size and organization within hexaploid Festuca arundinacea. Theor Appl Genet 83: 273–278 CrossRefGoogle Scholar
  8. de la Fuente V and Ortúñez E (2000). Nueva especie de Festuca L. sección Festuca (Poaceae) en la Península Ibérica. Lazaroa 21: 3–6 Google Scholar
  9. de la Fuente V and Ortúñez E (2001). Festuca sect. Eskia (Poaceae) in the Iberian Peninsula. Folia Geobot 36: 385–421 CrossRefGoogle Scholar
  10. de la Fuente V, Ortúñez E and Ferrero LM (1997). Contribución al conocimiento del género Festuca L. (Poaceae) en el País Basco y Sistema Ibérico septentrional (Península Ibérica). Itin Geobot 10: 317–351 Google Scholar
  11. de la Fuente V, Ferrero LM and Ortúñez E (2001). Chromosome counts in the genus Festuca L. section Festuca (Poaceae) in the Iberian Peninsula. Bot J Linn Soc 137: 385–398 CrossRefGoogle Scholar
  12. Devesa JA, Ruiz T, Tormo R, Muñoz A, Viera MC, Carrasco JP, Ortega A and Pastor J (1990). Contribución al conocimiento cariológico de las Poaceae en Extremadura (España) II. Bol Soc Brot, Sér 2 63: 153–205 Google Scholar
  13. Doležel J (1997). Applications of flow cytometry for the study of plant genomes. J Appl Genet 38: 285–302 Google Scholar
  14. Doležel J, Bartoš J, Voglmayr H and Greilhuber J (2003). Nuclear DNA content and genome size of trout and human. Cytometry Part A 51A: 127–128 CrossRefGoogle Scholar
  15. Doležel J, Greilhuber J, Lucretti S, Meister A, Lysák M, Nardi L and Obermayer R (1998). Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann Bot 82: 17–26 CrossRefGoogle Scholar
  16. Dubcovsky J and Martínez A (1992). Distribución geográfica de los niveles de ploidía en Festuca. Parodiana 7: 91–99 Google Scholar
  17. Ferrero LM and de la Fuente V (1996). Aportaciones al estudio cariológico de algunas especies del género Festuca L. endémicas del Mediterráneo Occidental. Bol Soc Brot 67: 303–308 Google Scholar
  18. Foggi B, Rossi G, Signorini MA, Pignotti L, Parolo G (2005) Il genere Festuca L. (Poaceae) in Italia. Website: http://www.unipv.it/labecove/Festuca/Home.htmGoogle Scholar
  19. Franco JA and Rocha Afonso ML (1998). Nova flora de Portugal (Continente e Açores) - Gramineae, Vol III. Escolar Editora, Lisboa, Portugal Google Scholar
  20. Fukui K, Kamisugi Y and Sakai F (1994). Physical mapping of 5S rDNA loci by direct-cloned biotinylated probes in barley chromosomes. Genome 37: 105–111 PubMedGoogle Scholar
  21. Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP and Firoozabady E (1983). Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220: 1049–1051 PubMedCrossRefGoogle Scholar
  22. Galland N (1988). Recherche sur l'origine de la flore orophile du Maroc: étude caryologique et cytogéographique. Travaux de l'Institut Scientifique, Université Mohammed V. Sér Bot 35: 1–168 Google Scholar
  23. Gerlach WL and Bedbrook JR (1979). Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucl Acids Res 7: 1869–1885 PubMedCrossRefGoogle Scholar
  24. Greilhuber J, Doležel J, Lysák MA and Bennett MD (2005). The origin, evolution and proposed stabilization of the terms `genome size' and `C-value' to describe nuclear DNA contents. Ann Bot 95: 255–260 PubMedCrossRefGoogle Scholar
  25. Grime JP and Mowforth MA (1982). Variation in genome size - an ecological interpretation. Nature 299: 151–153 CrossRefGoogle Scholar
  26. Harper JA, Thomas ID, Lovatt JA and Thomas HM (2004). Physical mapping of rDNA sites in possible diploid progenitors of polyploid Festuca species. Pl Syst Evol 245: 163–168 CrossRefGoogle Scholar
  27. Huff DR and Palazzo AJ (1998). Fine fescue species determination by laser flow cytometry. Crop Sci 38: 445–450 CrossRefGoogle Scholar
  28. Humphreys MW, Thomas HM, Morgan WG, Meredith MR, Harper JA, Thomas H, Zwierzykowski Z and Ghesquière M (1995). Discriminating the ancestral progenitors of hexaploid Festuca arundinacea using genomic in situ hybridization. Heredity 75: 171–174 Google Scholar
  29. Kerguélen M (1975). Les Gramineae (Poaceae) de la flore Francaise. Essai de mise au point taxonomique et nomenclaturale. Lejeunia, Nouv Sér 75: 1–343 Google Scholar
  30. Konarska B (1974). Karyological studies on Festuca rubra L. s.l. from Poland. Acta Biol Cracov Ser Bot 17: 175–118 Google Scholar
  31. Kopecký D, Lukaszewski AJ and Gibeault V (2005a). Reduction of ploidy level by androgenesis in intergeneric Lolium-Festuca hybrids for turf grass breeding. Crop Sci 45: 274–281 Google Scholar
  32. Kopecký D, Lukaszewski AJ and Doležel J. (2005b). Genomic constitution of Festulolium cultivars released in the Czech Republic. Pl Breed 124: 454–458 CrossRefGoogle Scholar
  33. Kopecký D, Loureiro J, Zwierzykowski Z, Ghesquière M and Doležel J (2006). Genome constitution and evolution in Lolium x Festuca hybrid cultivars (Festulolium). Theor Appl Genet 113: 731–742 PubMedCrossRefGoogle Scholar
  34. Kosmala A, Zwierzykowski Z, Gasior D, Rapacz M, Zwierzykowska E and Humphreys MW (2006). GISH/FISH mapping of genes for freezing tolerance transferred from Festuca pratensis to Lolium multiflorum. Heredity 96: 243–251 PubMedCrossRefGoogle Scholar
  35. Leitch IJ and Bennett MD (2004). Genome downsizing in polyploid plants. Biol J Linn Soc 82: 651–663 CrossRefGoogle Scholar
  36. Malik CP and Thomas PT (1966). Karyotypic studies in some Lolium and Festuca species. Caryologia 19: 167–195 Google Scholar
  37. Masoudi-Nejad A, Nasuda S, McIntosh RA and Endo TR (2002). Transfer of rye chromosome segments to wheat by a gametocidal system. Chromosome Res 10: 349–357 PubMedCrossRefGoogle Scholar
  38. Ortúñez E, de la Fuente V (1995) Reports (394–400) In: Kamari G, Felber F, Garbari F (eds) Mediterranean chromosome number reports. 5. Flora Mediterranea 5: 261–265Google Scholar
  39. Ortúñez E and de La Fuente V (2004). Chromosome counts in the genus Festuca section Eskia (Poaceae) in the Iberian Peninsula. Bot J Linn Soc 146: 331–337 CrossRefGoogle Scholar
  40. Pfosser M, Amon A, Lelley T and Heberle-Bors E (1995). Evaluation of sensitivity of flow cytometry in detecting aneuploidy in wheat using disomic and ditelosomic wheat-rye addition lines. Cytometry 21: 387–393 PubMedCrossRefGoogle Scholar
  41. Portal R (1999) Festuca de France. Published by the Author, Le Puy-en-VelayGoogle Scholar
  42. Queirós M (1973) Contribuição para o conhecimento citotaxonómico das Spermatophyta de Portugal I. Gramineae, supl. 2. Bol Soc Brot, Sér 2 47: 77–103Google Scholar
  43. Raina SN and Rani V (2001). GISH technology in plant genome research. Methods in Cell Biol 23: 83–104 CrossRefGoogle Scholar
  44. Schifino MT and Winge H (1983). Systematics and evolution of the Briza complex (Gramineae). 2. Karyotypes and nuclear DNA content of species of the Briza complex and some other genera of Poeae (Gramineae). Revista Brasileira de Genet. Poeae 6: 245–259 Google Scholar
  45. Schubert I and Wobus U (1985). In situ hybridization confirms jumping nucleolus organizing regions in Allium. Chromosoma 92: 143–148 CrossRefGoogle Scholar
  46. Schwarzacher T and Heslop-Harrison P (2000). Practical in Situ Hybridization. BIOS Scientific Publishers, Oxford, United Kingdom Google Scholar
  47. Schwarzacher T, Leitch AR, Bennett MD and Heslop-Harrison JS (1989). In situ localization of parental genomes in a wide hybrid. Ann Bot 64: 315–324 Google Scholar
  48. Seal AG (1983). DNA Variation in Festuca. Heredity 50: 225–236 Google Scholar
  49. Shaked H, Kashkush K, Ozkan H, Feldman M and Levy AA (2001). Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Pl Cell 13: 1749–1759 Google Scholar
  50. Šmarda P and Bureš P (2006). Intraspecific DNA content variability in Festuca pallens on different geographical scales and ploidy levels. Ann Bot 98: 665–678 PubMedCrossRefGoogle Scholar
  51. Takahashi C, Marshall JA, Bennett MD and Leitch IJ (1999). Genomic relationships between maize and its wild relatives. Genome 42: 1201–1207 PubMedCrossRefGoogle Scholar
  52. Thomas HM, Harper JA, Meredith MR, Morgan WG and King IP (1997). Physical mapping of ribosomal DNA sites in Festuca arundinacea and related species by in situ hybridization. Genome 40: 406–410 CrossRefPubMedGoogle Scholar
  53. Thomas HM, Harper JA, Meredith MR, Morgan WG, Thomas ID, Timms E and King IP (1996). Comparison of ribosomal DNA sites in Lolium species by fluorescence in situ hybridization. Chromosome Res 4: 486–490 PubMedCrossRefGoogle Scholar
  54. Xu W and Sleper DA (1994). Phylogeny of tall fescue and related species using RFLPs. Theor Appl Genet 88: 685–690 CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • J. Loureiro
    • 1
  • D. Kopecký
    • 2
  • S. Castro
    • 1
  • C. Santos
    • 1
  • P. Silveira
    • 1
  1. 1.CESAM & Department of BiologyUniversity of AveiroAveiroPortugal
  2. 2.Institute of Experimental BotanyAcademy of Sciences of the Czech RepublicOlomoucCzech Republic

Personalised recommendations