Plant Systematics and Evolution

, Volume 267, Issue 1–4, pp 79–92 | Cite as

Extensive ribosomal DNA (18S-5.8S-26S and 5S) colocalization in the North American endemic sagebrushes (subgenus Tridentatae, Artemisia, Asteraceae) revealed by FISH

  • S. Garcia
  • T. Garnatje
  • O. Hidalgo
  • E. D. McArthur
  • S. Siljak-Yakovlev
  • J. Vallès


Chromomycin A3 banding and fluorescent in situ hybridization (FISH) have been performed for six Artemisia species with special emphasis on subgenus Tridentatae. Morphometrical data on karyotype characters were calculated and idiograms with the position of GC-rich regions and 18S-5.8S-26S and 5S sites of ribosomal DNA were constructed. These sites were all colocalized. To our knowledge, this is the first time in the large family Asteraceae, indeed in angiosperms in general, that colocalization of the two rDNA regions studied is found at every single marked locus. In addition, transcriptionally active nucleolar organizer regions were detected after silver nitrate staining. Tridentatae is a cytogenetically homogeneous subgenus, which suggests that evolution of these species has not been coupled with important karyotypic reorganization. However, a few species are taxonomically difficult and show substantial differences. A loss of rDNA loci has been detected in a tetraploid taxon with respect to the diploids studied. These data provide clarifying insight into interspecific relationships between the studied taxa and overall evolutionary and systematic relationships of the Tridentatae.


Colocalization Compositae diploidization fluorochrome banding fluorescent in situ hybridization genome organization nucleolar organizing regions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abd El-Twab M. H. and Kondo K. (2006). FISH physical mapping of 5S, 45S and Arabidopsis-type telomere sequence repeats in Chrysanthemum zawadskii showing intra-chromosomal variation and complexity in nature. Chromosome Bot. 1: 1–5 Google Scholar
  2. Beetle A. A. (1959). New names within section Tridentatae of Artemisia. Rhodora 61: 82–85 Google Scholar
  3. Beetle A. A. (1960) A study of sagebrush, the section Tridentatae of Artemisia. In: Bulletin 368, University of Wyoming experiment station. Laramie, WY.Google Scholar
  4. Camacho J. P. M., Sharbel T. F. and Beukeboom L.W. (2000). B-chromosome evolution. Philos. Trans. Roy. Soc. Lond. Series B Biol. Sci. 355: 163–178 CrossRefGoogle Scholar
  5. Castilho A. and Heslop-Harrison J. S. (1995). Physical mapping of 5S and 18S-25S rDNA and repetitive DNA sequences in Aegilops umbellulata. Genome 38: 91–96 PubMedGoogle Scholar
  6. Cerbah M., Coulaud J. and Siljak-Yakovlev S. (1998). rDNA organization and evolutionary relationships in the genus Hypochaeris (Asteraceae). J.Heredity 89: 312–318 CrossRefGoogle Scholar
  7. Cronquist A. (1994) Asterales. In: Cronquist A., Holmgren N. H., Reveal J. L., Holmgren P. K. (eds.) Intermountain Flora , New York Botanical Garden, Bronx, Vol 5.Google Scholar
  8. Cuadrado A. and Jouve N. (1994). Highly repetitive sequences in B chromosomes of Secale cereale revealed by fluorescent in situ hybridization. Genome 37: 709–712 CrossRefPubMedGoogle Scholar
  9. Donald T. M., Leach C. R., Clough A. and Timmis J. M. (1995). Ribosomal RNA genes and the Bchromosome of Brachycome dichromosomatica. Heredity 74: 556–561 PubMedGoogle Scholar
  10. Drouin G. and Moniz de Sa M. (1995). The concerted evolution of 5S ribosomal genes linked to the repeat units of other multigene families. Molec. Biol. Evol. 12: 481–493 PubMedGoogle Scholar
  11. Garcia S., Garnatje T., Dariimaa S., Tsooj S. and Vallès J. (2006). New or rarely reported chromosome numbers in taxa of subtribe Artemisiinae (Anthemideae, Asteraceae) from Mongolia. Bot. J. Linn. Soc. 150: 203–210 CrossRefGoogle Scholar
  12. Garcia S., Sanz M., Garnatje T., Kreitschitz A., McArthur E. D. and Vallès J. (2004). Variation of DNA amount of 47 populations of the subtribe Artemisiinae and related taxa (Asteraceae, Anthemideae): karyological, ecological and systematic implications. Genome 47: 1004–1014 PubMedCrossRefGoogle Scholar
  13. Garnatje T., Vallès J., Vilatersana R., Garcia-Jacas N., Susanna A. and Siljak-Yakovlev S. (2004). Molecular cytogenetics of Xeranthemum L. and related genera (Asteraceae, Cardueae). Pl. Biol. 6: 140–146 CrossRefGoogle Scholar
  14. Geber G. and Schweizer D. (1987). Cytochemical heterochromatin differentiation in Sinapis alba (Cruciferae) using a simple air-drying technique for producing chromosome spreads. Pl. Syst. Evol. 158: 97–106 CrossRefGoogle Scholar
  15. Green D. M. (1988). Cytogenetics of the endemic New Zealand frog, Leiopelma hochstetteri: extraordinary supernumerary chromosome variation and a unique sex-chromosome system. Chromosoma 97: 55–70 CrossRefGoogle Scholar
  16. Hidalgo O. (2006) El grupo Rhaponticum (Asteraceae, Cardueae, Centaureinae): delimitación y filogenia. PhD dissertation, Universitat de Barcelona, Spain.Google Scholar
  17. Hidalgo O., Garcia-Jacas N., Garnatje T., Susana A. and Siljak-Yakovlev S. (2007). Karyological evolution in Rhaponticum (Asteraceae, Cardueae) and related genera. Bot. J. Linn. Soc. 153: 193–201 CrossRefGoogle Scholar
  18. Kavalco K. F. and Pazza R. (2004). A rapid alternative for obtaining silver-positive patterns in chromosomes. Genet. Molec. Biol. 27: 196–198 Google Scholar
  19. Kornkven A. B., Watson L. and Estes J. (1998). Phylogenetic analysis of Artemisia section Tridentatae (Asteraceae) based on sequences from the internal transcribed spacers (ITS) of nuclear ribosomal DNA. Amer. J. Bot. 85: 1787–1795 CrossRefGoogle Scholar
  20. Kornkven A. B., Watson L. and Estes J. (1999). A molecular phylogeny of Artemisia sect. Tridentatae (Asteraceae) based on chloroplast DNA restriction site variation. Syst. Bot. 24: 69–84 CrossRefGoogle Scholar
  21. Kotseruba V., Gernand D., Meister A. and Houben A. (2003). Uniparental loss of ribosomal DNA in the allotetraploid grass Zingeria trichopoda (2n=8). Genome 46: 156–163 PubMedCrossRefGoogle Scholar
  22. Lansdorp P. M. (2005). Major cutbacks at chromosome ends. Trends Biochem. Sci. 30: 388–395 PubMedCrossRefGoogle Scholar
  23. Levan A., Fredga K. and Sandberg A. A. (1964). Nomenclature for centromeric position on chromosomes. Hereditas 52: 201–220 CrossRefGoogle Scholar
  24. Lim K. Y., Matyásek R., Lichtenstein C. P. and Leitch A. R. (2000). Molecular cytogenetic analyses and phylogenetic studies in the Nicotiana section Tomentosae. Chromosoma 109: 245–258 PubMedCrossRefGoogle Scholar
  25. Maluszynska J. and Heslop-Harrison J. S. (1991). Localization of tandemly-reteated DNA sequences in Arabidopsis thaliana. Plant J. 1: 159–166 CrossRefGoogle Scholar
  26. McArthur E. D., Pope C. L. (1979) Karyotypes of four Artemisia species: A. carruthii, A. filifolia, A.frigida and A. spicescens. Great Basin Naturalist: 419–426.Google Scholar
  27. McArthur E. D., Pope C. L. and Freeman D. C. (1981). Chromosomal studies of subgenus Tridentatae of Artemisia: evidence for autopolyploidy. Amer. J.Bot. 68: 589–605 CrossRefGoogle Scholar
  28. McArthur E. D. and Sanderson S. C. (1999). Cytogeography and chromosome evolution of subgenus Tridentatae of Artemisia (Asteraceae). Amer. J.Bot. 86: 1754–1775 CrossRefGoogle Scholar
  29. Mendelak M. and Schweizer D. (1986). Giemsa C-banded karyotypes of some diploid Artemisia species. Pl. Syst. Evol. 152: 195–210 CrossRefGoogle Scholar
  30. Mishima M., Ohmido N., Fukui K. and Yahara T. (2002). Trends in site-number change of rDNA loci during polyploid evolution in Sanguisorba (Rosaceae). Chromosoma 110: 550–558 PubMedGoogle Scholar
  31. Muravenko O. V., Amosova A. V., Samatadze T. E., Semenova O., Nosova I. V., Popov K. V., Shostak N. G., Zoschuk S. A. and Zelenin A. V. (2004). Chromosome localization of 5S and 45S ribosomal DNA in the genomes of Linum L. species of the section Linum (syn. Protolinum and Adenolinum). Russian J. Genet. 40: 193–196 CrossRefGoogle Scholar
  32. Ohri D. and Ahuja M. (1990). Giemsa C-banded in Quercus L. (oak). Silvae Genet. 39: 5–6 Google Scholar
  33. Pellicer J., Garcia S., Garnatje T., Hidalgo O., Korobkov A. A., Dariimaa S. and Vallès J. (2007). Chromosome counts in Asian Artemisia L. (Asteraceae) species: from diploids to the first report of the highest polyploid in the genus. Bot. J. Linn. Soc. 153: 301–310 CrossRefGoogle Scholar
  34. Persson K. (1974). Biosystematic studies in the Artemisia maritima complex in Europe. Opera Bot. 35: 1–188 Google Scholar
  35. Pires J. C., Lim K. Y., Kovarík A., Matyásek R., Boyd A., Leitch A. R., Leitch I. J., Bennett M. D., Soltis P. S. and Soltis D. E. (2004). Molecular cytogenetic analysis of recently evolved Tragopogon (Asteraceae) allopolyploids reveal a karyoype that is additive of the diploid progenitors. Amer. J. Bot. 91: 1022–1035 Google Scholar
  36. Raina S. N., Mukai Y., Kawaguchi K., Goel S. and Jain A. (2001). Physical mapping of 18S-5.8S-26S ribosomal RNA gene families in three important vetches (Vicia species) and their allied taxa constituting three species complex. Theor. Appl. Genet. 103: 839–845 CrossRefGoogle Scholar
  37. Romero C. (1986). A new method for estimating karyotype asymmetry. Taxon 35: 526–530 CrossRefGoogle Scholar
  38. Rossi A. R. and Gornung E. (2005). Cytogenetic analysis of three Italian populations of Coregonus lavaretus (Pisces, Salmoniformes) with chromosomal localization of major and minor ribosomal genes and telomeric repeats. Hereditas 142: 15–21 PubMedCrossRefGoogle Scholar
  39. Schweizer D. and Ehrendorfer F. (1983). Evolution of the C-band patterns in Asteraceae-Anthemideae. Biol. Zentralbl. 102: 637–655 Google Scholar
  40. Sharma A. and Sen S. (2002). Chapter 1. Chromosome: structure and components. In: Sharma, A. and Sen, S. (eds) Chromosome botany, pp 1–30. Science Publishers, Inc. Enfield, New Hampshire Google Scholar
  41. Shultz L. M. (2005). Re-examination of subgeneric concepts in Artemisia. In: Ling, Y. R. (eds) International Symposium on Artemisia and its allies, pp 36–44. South China Institute of Botany, Guangzhou Google Scholar
  42. Shultz L. M. (1983) Systematics and anatomical studies of Artemisia subgenus Tridentatae (Anthemideae: Asteraceae). PhD dissertation, Claremont Graduate School, California.Google Scholar
  43. Siljak-Yakovlev S. and Cartier D. (1986). Heterochromatin patterns in some taxa of Crepis praemorsa complex. Caryologia 39: 27–32 Google Scholar
  44. Siljak-Yakovlev S., Cerbah M., Coulaud J., Stoian V., Brown S. C., Jelenic S. and Papes D. (2002). Nuclear DNA content, base composition, heterochromatin and rDNA in Picea omorika and Picea abies. Theor. Appl. Genet. 104: 505–512 PubMedCrossRefGoogle Scholar
  45. Siroky J., Lysák M. A., Doležel J., Kejnovsky E. and Vyskot B. (2001). Heterogeneity of rDNA distribution and genome size in Silene spp. Chromosome Res. 9: 387–393 PubMedCrossRefGoogle Scholar
  46. Sone T., Fujisawa M., Takenaka M., Nakagawa S., Yamaoka S., Sakaida1 M., Nishiyama R., Yamato K. T., Ohmido N., Fukui K., Fukuzawa H., Ohyama K. (1999). Bryophyte 5S rDNA was inserted into 45S rDNA repeat units after the divergence from higher land plants. Pl. Molec. Biol. 41: 679–685.Google Scholar
  47. Srivastava A. K. and Schlessinger D. (1991). Structure and organization of ribosomal DNA. Biochimie 73: 631–638 PubMedCrossRefGoogle Scholar
  48. Stebbins G. L. (1971). Chromosomal evolution in higher plants. Ed. Arnold, London Google Scholar
  49. Stitou S., Jimenez R., De la Guardia R. D. and Burgos M. (2000). Sex-chromosome pairing through heterochromatin in the African rodent Lemniscomys barbarus (Rodentia, Muridae). A synaptonemal complex study. Chromosome Res. 8: 277–283 PubMedCrossRefGoogle Scholar
  50. Torrell M., Cerbah M., Siljak-Yakovlev S. and Vallès J. (2001). Etude cytogénétique de trois taxons du complexe d'Artemisia campestris L. (Asteraceae, Anthemideae): localisation de l'hétérochromatine et de l'ADN ribosomique. Bocconea 13: 623–628 Google Scholar
  51. Torrell M., Cerbah M., Siljak-Yakovlev S. and Vallès J. (2003). Molecular cytogenetics of the genus Artemisia (Asteraceae, Anthemideae): fluorochrome banding and fluorescent in situ hybridization. I. Subgenus Seriphidium and related taxa. Pl. Syst. Evol. 239: 141–153 CrossRefGoogle Scholar
  52. Trivers R., Burt A. and Palestis B. G. (2004). B-chromosomes and genome size in flowering plants. Genome 47: 1–8 PubMedCrossRefGoogle Scholar
  53. Vallès J. (1987). Aportación al conocimiento citotaxonómico de ocho táxones ibéricos del género Artemisia L. (Asteraceae, Anthemideae). Ann. Jard. Bot. Madrid 44: 79–96 Google Scholar
  54. Vallès J., Garnatje T., Garcia S., Sanz M. and Korobkov A. A. (2005). Chromosome numbers in the tribes Anthemideae and Inuleae (Asteraceae). Bot. J. Linn. Soc. 148: 77–85 CrossRefGoogle Scholar
  55. Vallès J. and Siljak-Yakovlev S. (1997). Cytogenetic studies in the genus Artemisia L.: fluorochrome banded karyotypes of five taxa, including the Iberian endemic species A. barrelieri Besser. Canad. J. Bot. 75: 595–606 CrossRefGoogle Scholar
  56. Vallès J., Torrell M., Garnatje T., Garcia-Jacas N., Vilatersana R. and Susanna A. (2003). The genus Artemisia and its allies: phylogeny of the subtribe Artemisiinae (Asteraceae, Anthemideae) based on nucleotide sequences of nuclear ribosomal DNA internal transcribed spacers (ITS). Pl. Biol. 5: 274–284 CrossRefGoogle Scholar
  57. Vischi M., Jurman I., Bianchi G. and Morgante M. (2003). Karyotype of Norway spruce by multicolor FISH. Theor. Appl. Genet. 107: 591–597 PubMedCrossRefGoogle Scholar
  58. Vitturi R., Colomba M. S., Pirrone A. M. and Mandrioli M. (2002). rDNA (18S–28S and 5S) colocalization and linkage between ribosomal genes and (TTAGGG)n telomeric sequence in the earthworm, Octodrilus complanatus (Annelida: Oligochaeta: Lumbricidae), revealed by single- and double-color FISH. J. Heredity 93: 279–282 CrossRefGoogle Scholar
  59. Ward G. H. (1953). Artemisia section Seriphidium in North America: A cytotaxonomic study. Contributions from the Dudley Herbarium of Stanford University 4: 155–205 Google Scholar
  60. Zoldos V., Papes D., Cerbah M., Panaud O., Besendorfer V. and Siljak-Yakovlev S. (1999). Molecular-cytogenetic studies of ribosomal genes and heterochromatin reveal conserved genome organization among 11 Quercus species. Theor. Appl. Genet. 99: 967–977 CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • S. Garcia
    • 1
  • T. Garnatje
    • 2
  • O. Hidalgo
    • 2
  • E. D. McArthur
    • 3
  • S. Siljak-Yakovlev
    • 4
  • J. Vallès
    • 1
  1. 1.Laboratori de Botànica Facultat de FarmàciaUniversitat de BarcelonaBarcelonaSpain
  2. 2.Institut Botànic de Barcelona (CSIC-ICUB)BarcelonaSpain
  3. 3.United States Department of AgricultureShrub Sciences Laboratory, Rocky Mountain Research Station, Forest ServiceProvoUSA
  4. 4.Ecologie, Systématique, Evolution, UMR CNRS 8079Université Paris-SudOrsay CedexFrance

Personalised recommendations