Plant Systematics and Evolution

, Volume 267, Issue 1–4, pp 105–119 | Cite as

Reproductive isolation in the Aegean Ophrys omegaifera complex (Orchidaceae)

  • P. M. Schlüter
  • P. M. Ruas
  • G. Kohl
  • C. F. Ruas
  • T. F. Stuessy
  • H. F. Paulus


The orchid genus Ophrys operates a system of sexual deception by which high specificity of pollination is attained. Reproductive isolation in Ophrys mainly rests upon prezygotic isolation mechanisms. The level of genetic separateness of Ophrys taxa with different pollinators is therefore likely determined by the fidelity of pollinators. The present study employs genetic fingerprinting to investigate this in the east Aegean Ophrys omegaifera s.l. complex, also including O. dryis, a west Mediterranean species of this complex. Ophrys fleischmannii, O. basilissa, and the west Mediterranean O. dyris, are found to be well-separated genetic entities whereas O. omegaifera s.str. and the putative hybrid taxon, O. sitiaca, are found to be genetically inseparable across their entire range of co-occurrence. This suggests that specific pollinators have high enough fidelity to act as effective isolating factors in east Aegean O. omegaifera s.l. as a whole, but that the situation in the species pair of O. sitiaca and O. omegaifera is likely to be more complex.


AFLP Ophrys omegaifera Ophrys sitiaca Ophrys basilissa Ophrys fleischmannii Ophrys dyris pollinators reproductive isolation sexually deceptive orchids 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alibertis C., Alibertis A. and Reinhard H. R. (1990). Untersuchungen am Ophrys omegaifera – Komplex Kretas. Mitt. Bl. Arbeitskr. Heim. Orch. Baden-Württ. 22: 181–236 Google Scholar
  2. Arditti J. and Ghani A. K. A. (2000). Tansely Review No. 110. Numerical and physical properties of orchid seeds and their biological implications. New Phytol. 145: 367–421 CrossRefGoogle Scholar
  3. Bateman R. M., Hollingsworth P. M., Preston J., Luo J.-B., Pridgeon A. M. and Chase M. W. (2003). Molecular phylogenetics and evolution of Orchidinae and selected Habenariinae (Orchidaceae). Bot. J. Linn. Soc. 142: 1–40 CrossRefGoogle Scholar
  4. Benham J. J., Jeung J.-U., Jasieniuk M. A., Kanazin V. and Blake T. K. (1999). Genographer: a graphical tool for automated fluorescent AFLP and microsatellite analysis. J. Agric. Genom. 4: 399 Google Scholar
  5. Bernardos S., Amich F. and Gallego F. (2003). Karyological and taxonomical notes on Ophrys (Orchidoideae, Orchidaceae) from the Iberian Peninsula. Bot. J. Linn. Soc. 142: 395–406 CrossRefGoogle Scholar
  6. Bernardos S., Crespí A., del Rey F. and Amich F. (2005). The section Pseudophrys (Ophrys, Orchidaceae) in the Iberian Peninsula: a morphometric and molecular analysis. Bot. J. Linn. Soc. 148: 359–375 CrossRefGoogle Scholar
  7. Bonin A., Bellemain E., Bronken Eidesen P., Pompanon F., Brochmann C. and Taberlet P. (2004). How to track and assess genotyping errors in population genetic studies. Molec. Ecol. 13: 3261–3273 CrossRefGoogle Scholar
  8. Buerkle C. A. (2005). Maximum-likelihood estimation of a hybrid index based on molecular markers. Molec. Ecol. Notes 5: 684–687 CrossRefGoogle Scholar
  9. Casgrain P., Legendre P. (2004) The R package for multivariate and spatial analysis, version 4.0 (development release 9). Department of Biological Sciences, University of Montreal, Montreal, Canada.Google Scholar
  10. Corander J., Waldmann P. and Sillanpää M. J. (2003). Bayesian analysis of genetic differentiation between populations. Genetics 163: 367–374 PubMedGoogle Scholar
  11. Cozzolino S., D'Emerico S. and Widmer A. (2004). Evidence for reproductive isolate selection in Mediterranean orchids: karyotype differences compensate for the lack of pollinator specificity. Proc. Roy. Soc. Lond. B. 271: S259–S262 CrossRefGoogle Scholar
  12. Delforge P. (2005). Guide des orchidées d'Europe, d'Afrique du Nord et du Proche-Orient, 3rd ed. Delachaux et Niestlé, Paris, France Google Scholar
  13. D'Emerico S., Pignone D., Bartolo G., Pulvirenti S., Terrasi C., Stuto S. and Scrugli A. (2005). Karyomorphology, heterochromatin patterns and evolution in the genus Ophrys (Orchidaceae). Bot. J. Linn. Soc. 148: 87–99 CrossRefGoogle Scholar
  14. Ehrendorfer F. (1980) Hybridisierung, Polyploidie und Evolution bei europäisch-mediterranen Orchideen. Orchidee Sonderheft: 15–34.Google Scholar
  15. Gölz P., Reinhard H. R., Alibertis C., Alibertis A., Gack C. and Paulus H. F. (1996). Gestaltwandel innerhalb kretischer Orchideenaggregate im Verlauf der Monate Januar bis Mai. J. Eur. Orch. 28: 641–701 Google Scholar
  16. Grant V. (1994). Modes and origins of mechanical and ethological isolation in angiosperms. Proc. Natl. Acad. Sci. USA 91: 3–10 PubMedCrossRefGoogle Scholar
  17. Greilhuber J. and Ehrendorfer F. (1975). Chromosome numbers and evolution in Ophrys (Orchidaceae). Pl. Syst. Evol. 124: 125–138 CrossRefGoogle Scholar
  18. Hedrén M., Fay M. F. and Chase M. W. (2001). Amplified fragment length polymorphisms (AFLP) reveal details of polyploid evolution in Dactylorhiza (Orchidaceae). Amer. J. Bot. 88: 1868–1880 CrossRefGoogle Scholar
  19. Huson D. H. and Bryant D. (2006). Application of phylogenetic networks in evolutionary studies. Molec. Biol. Evol. 23: 254–267 PubMedCrossRefGoogle Scholar
  20. Jaccard P. (1908). Nouvelles recherches sur la distribution florale. Bull. Soc. Vaud. Sci. Nat. 44: 223–270 Google Scholar
  21. Kretzschmar H., Kretzschmar G. and Eccarius W. (2002). Orchideen auf Kreta, Kasos und Karpathos. Ein Feldführer durch die Orchideenflora der zentralen Insel der Südägäis. Selbstverlag H. Kretzschmar, Bad Hersfeld, Germany Google Scholar
  22. Kullenberg B. (1961). Studies in Ophrys pollination. Zool. Bidr. Uppsala 34: 1–340 Google Scholar
  23. Mant J. G., Peakall R. and Schiestl F. P. (2005). Does selection on floral odor promote differentiation among populations and species of the sexually orchid genus Ophrys. Evolution 59: 1449–1463 PubMedGoogle Scholar
  24. Nei M. and Li W.-H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76: 5269–5273 PubMedCrossRefGoogle Scholar
  25. Paulus H. F. (1988). Beobachtungen zur Pseudokopulation auf Ophrys-Arten (Orchidaceae) Kretas (II) – mit einer Beschreibung von Ophrys sitiaca H. F. Paulus & C. + A. Alibertis nov. spec. aus dem Ophrys fuscaomegaifera Formenkreis. Mitt. Bl. Arbeitskr. Heim. Orch. Baden-Württ. 20: 817–822 Google Scholar
  26. Paulus H. F. (2001). Material zu einer Revision des Ophrys fusca s.str. Artenkreises I. Ophrys nigroaenea-fusca, O. colletes-fusca, O. flavipes-fusca, O. funerea, O. forestieri oder was ist die typische Ophrys fusca Link 1799 (Orchidaceae)?. J. Eur. Orch. 33: 121–177 Google Scholar
  27. Paulus H. F. (2006). Deceived males - Pollination biology of the Mediterranean orchid genus Ophrys (Orchidaceae). J. Eur. Orch. 38: 303–353 Google Scholar
  28. Paulus H. F. and Gack C. (1981). Neue Beobachtungen zur Bestäubung von Ophrys (Orchidaceae) in Südspanien, mit besonderer Berücksichtigung des Formenkreises Ophrys fusca agg. Pl. Syst. Evol. 137: 241–358 CrossRefGoogle Scholar
  29. Paulus H. F. and Gack C. (1990a). Pollination in Ophrys (Orchidaceae) in Cyprus. Pl. Syst. Evol. 169: 177–207 CrossRefGoogle Scholar
  30. Paulus H. F. and Gack C. (1990b). Pollinators as prepollinating isolation factors: evolution and speciation in Ophrys (Orchidaceae). Israel J. Bot. 39: 43–79 Google Scholar
  31. Paulus H. F., Gack C. (1994) Signalfäschung als Bestäubungsstrategie in der mediterranen Orchideengattung Ophrys - Probleme der Artbildung und der Artabgrenzung. In: Brederoo P., Kapteyn den Boumeester D. W. (eds.) International Symposium of European Orchids, Euorchis 1992, Utrecht/Haarlem, pp. 45–71.Google Scholar
  32. Pfosser M. F., Jakubowsky G., Schlüter P. M., Fer T., Kato H., Stuessy T. F. and Sun B.-Y. (2006). Evolution of Dystaenia takesimana (Apiaceae), endemic to Ullung Island, Korea. Pl. Syst. Evol. 256: 159–170 CrossRefGoogle Scholar
  33. Podani J. (2001). SYN-TAX 2000. Computer programs for data analysis in ecology and systematics. Scientia Publishing, Budapest, Hungary Google Scholar
  34. Pritchard J. K., Stephens M. and Donnelly P. (2000). Inference of population structure using multilocus genotype data. Genetics 155: 945–959 PubMedGoogle Scholar
  35. Schiestl F. P. and Ayasse M. (2002). Do changes in floral odor cause speciation in sexually deceptive orchids. Pl. Syst. Evol. 234: 111–119 CrossRefGoogle Scholar
  36. Schiestl F. P., Ayasse M., Paulus H. F., Löfstedt C., Hansson B. S., Ibarra F. and Francke W. (1999). Orchid pollination by sexual swindle. Nature 399: 421–422 CrossRefGoogle Scholar
  37. Schiestl F. P., Ayasse M., Paulus H. F., Löfstedt C., Hansson B. S., Ibarra F. and Francke W. (2000). Sex pheromone mimicry in the early spider orchid (Ophrys sphegodes): patterns of hydrocarbons as the key mechanism for pollination by sexual deception. J. Comp. Physiol. A 186: 567–574 PubMedCrossRefGoogle Scholar
  38. Schlüter P. M. and Harris S. A. (2006). Analysis of multilocus fingerprinting data sets containing missing data. Molec. Ecol. Notes 6: 569–572 CrossRefGoogle Scholar
  39. Schönswetter P., Tribsch A. and Niklfeld H. (2004). Amplified fragment length polymorphism (AFLP) reveals no genetic divergence of the Eastern Alpine endemic Oxytropis campestris subsp. tiroliensis (Fabaceae) from widespread subsp. campestris. Pl. Syst. Evol. 244: 245–255 CrossRefGoogle Scholar
  40. Soliva M., Kocyan A. and Widmer A. (2001). Molecular phylogenetics of the sexually deceptive orchid genus Ophrys (Orchidaceae) based on nuclear and chloroplast DNA sequences. Molec. Phylogenet. Evol. 20: 78–88 PubMedCrossRefGoogle Scholar
  41. Soliva M. and Widmer A. (2003). Gene flow across species boundaries in sympatric, sexually deceptive Ophrys (Orchidaceae) species. Evolution 57: 2252–2261 PubMedGoogle Scholar
  42. Stökl J., Paulus H. F., Dafni A., Schulz C., Francke W. and Ayasse M. (2005). Pollinator attracting odour signals in sexually deceptive orchids of the Ophrys fusca group. Pl. Syst. Evol. 254: 105–120 CrossRefGoogle Scholar
  43. Swofford D. L. (2002). PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, MA, USA Google Scholar
  44. Tremetsberger K., Stuessy T. F., Guo Y.-P., Baeza C. M., Weiss-Schneeweiss H. and Samuel R. M. (2003). Amplified fragment length polymorphism (AFLP) variation within and among populations of Hypochaeris acaulis (Asteraceae) of Andean southern South America. Taxon 52: 237–245 CrossRefGoogle Scholar
  45. Tyteca D., Benito Ayuso J. and Walravens M. (2003). Ophrys algarvensis, a new species from the southern Iberian Peninsula. J. Eur. Orch. 35: 57–78 Google Scholar
  46. Vos P., Hogers R., Bleeker M., Reijans M., van de Lee T., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M. and Zabeau M. (1995). AFLP: a new technique for DNA fingerprinting. Nucl. Acids Res. 23: 4407–4414 PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • P. M. Schlüter
    • 1
    • 2
    • 4
  • P. M. Ruas
    • 1
    • 3
  • G. Kohl
    • 1
  • C. F. Ruas
    • 1
    • 3
  • T. F. Stuessy
    • 1
  • H. F. Paulus
    • 2
  1. 1.Department of Systematic and Evolutionary BotanyUniversity of ViennaViennaAustria
  2. 2.Department of Evolutionary BiologyUniversity of ViennaViennaAustria
  3. 3.Departamento de Biologia GeralUniversidade Estadual de LondrinaLondrinaBrazil
  4. 4.Ecological Plant GeneticsSwiss Federal Institute of Technology, Zürich (ETH), CHN G29ZürichSwitzerland

Personalised recommendations