Plant Systematics and Evolution

, Volume 267, Issue 1–4, pp 129–146 | Cite as

Demography, and genetic and morphological variability of the endangered Sophronitis sincorana (Orchidaceae) in the Chapada Diamantina, Brazil

  • E. L. BorbaEmail author
  • R. R. Funch
  • P. L. Ribeiro
  • E. C. Smidt
  • V. Silva-Pereira


We carried out a demographic study and evaluated the genetic and morphological variability in five populations of the endangered Sophronitis sincorana (Orchidaceae) endemic to Northeastern Brazil, based on allozyme and morphometric analyses. Plant density was approximately 0.5 plants/m2, and the projected total number of plants was approximately 50,000 individuals. However, fruit set and recruitment of individuals are rare. The genetic variability was very high in all populations (P = 100, A = 3.0−3.5, H e = 0.33−0.48), and all populations presented similar values of morphological variability. Low genetic and morphological structuring were found in the species (F ST = 0.053, AMRPP = 0.018). The elevated coefficient of endogamy encountered in populations of S. sincorana indicates the occurrence of structuring within the populations. The lack of correlation between morphological and genetic variation in this species indicates that none of the markers examined should be used separately for either conservation purposes.


Allozyme campo rupestre Chapada Diamantina conservation morphometrics Orchidaceae Sophronitis sincorana variability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ayres M., Ayres-Jr. M., Ayres D. L. and Santos A. S. (2003). BioEstat 3.0 Aplicações estatísticas nas áreas das ciências biológicas e médicas. Sociedade Civil Mamirauá, Belém Google Scholar
  2. Azevedo C. O., Borba E. L., van den Berg C. (2006) Evidence of natural hybridization and introgression in Bulbophyllum involutum Borba, Semir & F.Barros and B. weddellii (Lindl.) Rchb.f. (Orchidaceae) in the Chapada Diamantina, Brazil, by using allozyme markers. Rev. Brasil. Bot. 29: 415–421.Google Scholar
  3. Azevedo M. T. A, Borba E. L., Semir J. and Solferini V. N. (2007). Very high genetic variability in Neotropical myophilous orchids. Bot. J. Linn. Soc. 153: 33–40 CrossRefGoogle Scholar
  4. Bijlsma R., Bundgaard J. and Boerema A. C. (2000). Does inbreeding affect the extinction risk of small populations?: predictions from Drosophila. J. Evol. Biol. 13: 502–514 CrossRefGoogle Scholar
  5. Borba E. L. and Braga P. I. S. (2003). Reproductive biology of Pseudolaelia corcovadensis (Orchidaceae): melittophyly and self-compatibility in a basal Laeliinae. Rev. Bras. Bot. 26: 541–549 CrossRefGoogle Scholar
  6. Borba E. L., Felix J. M., Solferini V. N. and Semir J. (2001a). Fly-pollinated Pleurothallis (Orchidaceae) species have high genetic variability: evidence from isozyme markers. Amer. J. Bot. 88: 419–428 CrossRefGoogle Scholar
  7. Borba E. L., Semir J. and Shepherd G. J. (2001b). Self-incompatibility, inbreeding depression and crossing potential in five Brazilian Pleurothallis (Orchidaceae) species. Ann. Bot. 88: 89–99 CrossRefGoogle Scholar
  8. Borba E. L., Shepherd G. J., van den Berg C. and Semir J. (2002). Floral and vegetative morphometrics of five Pleurothalis (Orchidaceae) species: correlation with taxonomy, phylogeny, genetic variability and pollination systems. Ann. Bot. 90: 219–230 PubMedCrossRefGoogle Scholar
  9. Brune W., Alfenas A. C. and Junghans T. G. (1998). Identificações específicas de enzimas em géis. In: Alfenas, A. C. (eds) Eletroforese de isoenzimas e proteinas afins: fundamentos e aplicações em plantas e microorganismos, pp 201–328. Universidade Federal de Viçosa, Viçosa Google Scholar
  10. Case M. A. (1994). Extensive variation in the levels of genetic diversity and degree of relatedness among five species of Cypripedium (Orchidaceae). Amer. J. Bot. 81: 175–184 CrossRefGoogle Scholar
  11. Case M. A., Mlodozeniec H. T., Wallace L. E. and Weldy T. W. (1998). Conservation genetics and taxonomic status of the rare Kentucky Lady's slipper: Cypripedium kentuckiense (Orchidaceae). Amer. J. Bot. 85: 1779–1779 CrossRefGoogle Scholar
  12. Conceição A. S. (2006) Sistemática e filogenia de Chamaecrista subseção Baseophyllum (Leguminosae-Caesalpinioideae). PhD Thesis, Universidade Estadual de Feira de Santana, Feira de Santana.Google Scholar
  13. Corrias B., Rossi W., Arduino P., Cianchi R. and Bullini L. (1991). Orchis longicornu Poiret in Sardinina: genetic, morphological and chorological data. Webbia 45: 71–101 Google Scholar
  14. Duveen D. I. (1983). Laelia sincorana Schltr. The appearance, disappearance and reappearance of a showy Brazilian orchid. Orchid Digest 47: 135–137 Google Scholar
  15. Ehlers B. K. and Pedersen H. (2000). Genetic variation in three species of Epipactis (Orchidaceae): geographic scale and evolutionary inferences. Biol. J. Linn. Soc. 69: 411–430 CrossRefGoogle Scholar
  16. Falk D. A. and Holsinger K. E. (1991). Genetics and conservation of rare plants. Oxford University Press, New York Google Scholar
  17. Giulietti A. M. and Pirani J. R. (1988). Patterns of geographic distribution of some plant species from the Espinhaço Range, Minas Gerais and Bahia, Brazil. In: Heyer, W. R. and Vanzolini, P. E. (eds) Proceedings of a Workshop on Neotropical distribution patterns, pp 39–69. Academia Brasileira de Ciências, Rio de Janeiro Google Scholar
  18. Giulietti A. M., Pirani J. R. and Harley R. M. (1997). Espinhaço range region. Eastern Brazil. In: Davis, S. D., Heywood, V. H., Herrera-Macbryde, O., Villa-Lobos, J., and Hamilton, A. C. (eds) Centres of plant diversity: a guide and strategy for their conservation, Vol. 3. The Americas, pp 397–404. World Wildlife Fundation and IUCN, Cambridge Google Scholar
  19. Giulietti N., Giulietti A. M., Pirani J. R. and Menezes N. L. (1988). Estudos em sempre-vivas: importância econômica do extrativismo em Minas Gerais, Brasil. Acta Bot. Bras. 1(Suppl. 2): 179–193 Google Scholar
  20. Goldman D. H., van den Berg C. and Griffith M. P. (2004). Morphometric circunscription of species and infraspecific taxa in Calopogon R. Br. (Orchidaceae). Pl. Syst. Evol. 274: 37–60 Google Scholar
  21. Grant V. (1981). Plant speciation. Columbia University Press, New York Google Scholar
  22. Hamrick J. L. and Godt M. J. (1990). Allozyme diversity in plant species. In: Brown, A. H. D., Clegg, M. T., Kahler, A. L. and Weir, B. S. (eds) Plant population genetics, breeding and genetic resources, pp 43–63. Sinauer, Sunderland Google Scholar
  23. Hamrick J. L., Godt M. J., Murawski D. A. and Loveless M. D. (1991). Correlations between species traits and allozyme diversity: implications for conservation biology. In: Falk, D. A. and Holsinger, K. E. (eds) Genetics and conservation of rare plants, pp 75–86. Oxford University Press, New York Google Scholar
  24. Handel S. N. (1983). Pollination ecology, plant population structure and gene flow. In: Real, L. (eds) Pollination biology, pp 163–211. Academic Press, Orlando Google Scholar
  25. Heywood J. S. (1991). Spatial analysis of genetic variation in plant populations. Ann. Rev. Ecol. Syst. 22: 335–355 CrossRefGoogle Scholar
  26. Jesus F. F., Solferini V. N., Semir J. and Prado P. I. (2001). Local genetic differentiation in Proteopsis argentea (Asteraceae), a perennial herb endemic in Brazil. Pl. Syst. Evol. 226: 59–68 CrossRefGoogle Scholar
  27. Klier K., Leoschke M. J. and Wendel J. F. (1991). Hybridization and introgression in the white and yellow ladyslipper orchids (Cypripedium candidum and Cypripedium pubescens). J. Heredity 82: 305–318 Google Scholar
  28. Lambert S. M., Borba E. L. and Machado M. C. (2006a). Allozyme diversity and morphometrics of the endangered Melocactus glaucescens (Cactaceae), and investigation of the putative hybrid origin of M. ×albicephalus (M. ernestii × M. glaucescens) in north-eastern Brazil. Pl. Spec. Biol. 21: 93–108 CrossRefGoogle Scholar
  29. Lambert S. M., Borba E. L., Machado M. C. and Andrade S. C. S. (2006b). Allozyme diversity and morphometrics of Melocactus paucispinus (Cactaceae) and evidence for hybridization with M. concinnus in the Chapada Diamantina, North-Eastern Brazil. Ann. Bot. 97: 389–403 CrossRefGoogle Scholar
  30. Levene H. (1949). On a matching problem arising in genetics. Ann. Math. Statist. 20: 91–94 Google Scholar
  31. Levin D. A. (2000). The origin, expansion and demise of plant species. Oxford University Press, New York Google Scholar
  32. Machado M. C. (2005) O gênero Discocactus Pfeiff. (Cactaceae) no estado da Bahia, Brasil: variabilidade morfolo´ gica, variabilidade gene´ tica, taxonomia e conservação. Master Thesis, Universidade Estadual de Feira de Santana, Feira de Santana.Google Scholar
  33. Matias L. Q., Braga P. I. S. and Freire A. G. (1996). Biologia reprodutiva de Constantia cipoensis Porto & Brade (Orchidaceae), endêmica da Serra do Cipó , Minas Gerais. Rev. Bras. Bot. 19: 119–125 Google Scholar
  34. McCune B. and Mefford M. J. (1999). PCOrd – Multivariate analysis of ecological data. version 4.10. MjM Software, Gleneder Beach Google Scholar
  35. Nei M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590 PubMedGoogle Scholar
  36. Pereira A. C. S., Borba E. L. and Giulietti A. M. (2007). Genetic and morphological variability of the endangered Syngonanthus mucugensis Giul. (Eriocaulaceae), from the Chapada Diamantina, Brazil: implications for conservation and taxonomy. Bot. J. Linn. Soc. 153: 401–416 CrossRefGoogle Scholar
  37. Ribeiro P. L. (2006). Variabilidade genética e morfológica intra e interpopulacional no complexo Bulbophyllum exaltatum (Orchidaceae) ocorrente nos campos rupestres: implicações taxonômicas e biogeográficas. Master Thesis. Universidade Estadual de Feira de Santana, Feira de Santana Google Scholar
  38. Ridgway G. J., Sherburne S. W. and Lewis R. D. (1970). Polymorphism in the esterases of Atlantic herring. Trans. Am. Fish. Soc. 99: 147–151 CrossRefGoogle Scholar
  39. Scacchi R. and De Angelis G. (1989). Isoenzyme polymorphisms in Gymnadenia conopsea and its inferences for systematics within this species. Biochem. Syst. Ecol. 17: 25–33 CrossRefGoogle Scholar
  40. Scacchi R., De Angelis G. and Lanzara P. (1990). Allozyme variation among and within eleven Orchis species (fam. Orchidaceae), with special reference to hybridization aptitude. Genetica 81: 143–150 CrossRefGoogle Scholar
  41. Schlegel M., Steinbrück G., Hahn K. and Röttger B. (1989). Interspecific relationship of ten European orchid species as revealed by enzyme electrophoresis. Pl. Syst. Evol. 163: 107–119 CrossRefGoogle Scholar
  42. Shaw C. R. and Prasad R. (1970). Starch gel eletrophoresis of enzymes – a compilation of recipes. Biochem. Genet. 4: 297–320 PubMedCrossRefGoogle Scholar
  43. Shepherd G. J. (1995) Fitopac 1. Manual do usuário. Universidade Estadual de Campinas, Campinas.Google Scholar
  44. Smidt E. C., Silva-Pereira V. and Borba E. L. (2006). Reproductive biology of two Cattleya (Orchidaceae) species endemic to Northeastern Brazil. Pl. Spec. Biol. 21: 85–91 CrossRefGoogle Scholar
  45. Sneath P. H. A. and Sokal R. R. (1973). Numerical taxonomy. Freeman and Co., San Francisco Google Scholar
  46. Soltis D. E., Haufler C. H., Darrow D. C. and Gastony G. J. (1983). Starch gel eletrophoresis of ferns: a compilation of grinding buffers, gel and electrode buffers, and staining schedule. Amer. Fern J. 73: 9–27 CrossRefGoogle Scholar
  47. StatSoft Inc. (2003) Statistica (data analysis software system), version 6. Salt Soft Inc., Tulsa.Google Scholar
  48. Stuber C. W., Goodman M. M. and Johnson F. M. (1977). Genetic control and racial variation of β-glucosidase isozymes in maize (Zea mays L.). Biochem. Genet. 15: 383–394 PubMedCrossRefGoogle Scholar
  49. Sun M. (1996). Effects of population size, mating system and evolutionary origin on genetic diversity in Spiranthes sinensis and S. hongkongensis. Conserv. Biol. 10: 785–795 CrossRefGoogle Scholar
  50. Sun M. and Ganders F. R. (1990). Outcrossing rates and allozymes variation in rayed and rayless morphs of Bidens pilosa. Heredity 64: 139–143 Google Scholar
  51. Swofford D. L. and Selander R. B. (1989). BIOSYS-1: Computer program for the analysis of allelic variation in population genetics and biochemical systematics. Illinois Natural History Survey, Champaign Google Scholar
  52. Trapnell D. W., Hamrick J. D. and Nason J. (2004). Three-dimensional fine-scale genetic structure of the Neotropical epiphytic orchid, Laelia rubescens. Molec. Ecol. 13: 1111–1118 CrossRefGoogle Scholar
  53. Tremblay R. L., Ackerman J. D., Zimmerman J. K. and Calvo R. N. (2005). Variation in sexual reproduction in orchids and its evolutionary consequences: a spasmodic journey to diversification. Biol. J. Linn. Soc. 84: 1–54 CrossRefGoogle Scholar
  54. Wallace L. A. (2002). Examining the effects of fragmentation on genetic variation in Platanthera leucophaea (Orchidaceae): inferences from allozyme and random amplified polymorphic DNA markers. Pl. Spec. Biol. 17: 37–39 CrossRefGoogle Scholar
  55. Withner C. L. (1990). The Cattleyas and their relatives. II. The Laelias. Timber Press, Portland Google Scholar
  56. Wright S. (1978). Evolution and the genetics of populations – variability within and among natural populations, Vol. 4. University of Chicago Press, Chicago Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • E. L. Borba
    • 1
    Email author
  • R. R. Funch
    • 2
  • P. L. Ribeiro
    • 2
  • E. C. Smidt
    • 2
  • V. Silva-Pereira
    • 2
  1. 1.Departamento de BotânicaUniversidade Federal de Minas Gerais, Instituto de Ciências BiológicasBelo HorizonteBrazil
  2. 2.Departamento de Ciências BiológicasUniversidade Estadual de Feira de Santana, Laboratório de Sistemática Molecular de PlantasFeira de SantanaBrazil

Personalised recommendations