Advertisement

Plant Systematics and Evolution

, Volume 267, Issue 1–4, pp 191–203 | Cite as

Phylogeny and biogeography of Sassafras (Lauraceae) disjunct between eastern Asia and eastern North America

  • Z.-L. Nie
  • J. Wen
  • H. Sun
Article

Abstract

Sassafras (Lauraceae) consists of three species disjunct between eastern Asia (S. tzumu and S. randaiense) and eastern North America (S. albidum). Phylogenetic analysis based on sequences of nuclear ribosomal ITS and three chloroplast non-coding regions (rpl16, trnL-F, and psbA-trnH) showed that Sassafras is monophyletic and that the eastern North American S. albidum is sister to the clade of its two eastern Asian counterparts. Their intercontinental divergence was estimated to be 13.80 ± 2.29−16.69 ± 2.52 million years ago (mya) using the penalized likelihood method with the ITS and three chloroplast markers. Biogeographic analyses combined with fossil evidence suggest that Sassafras has a relict distribution in the Northern Hemisphere without a Gondwanan link. The divergence time of the two eastern Asian species (the continental Chinese Sassafras tzumu and S. randaiense endemic to Taiwan) is estimated to be 0.61 ± 0.75−2.23 ± 0.76 mya. Sassafras randaiense from Taiwan was most likely derived from an ancestor from continental China.

Keywords

Disjunction eastern Asia eastern North America Lauraceae Sassafras Taiwan 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldwin B. G. and Sanderson M. J. (1998). Age and rate of diversification of the Hawaiian silversword alliance (Compositae). Proc. Natl. Acad. Sci. USA 95: 9402–9406 PubMedCrossRefGoogle Scholar
  2. Blake S. F. (1918). Note on the proper name for the Sassafras. Rhodora 20: 98–99 Google Scholar
  3. Chanderbali A. S., van der Werff H. and Renner S. S. (2001). Phylogeny and historical biogeography of Lauraceae: evidence from the chloroplast and nuclear genomes. Ann. Missouri Bot. Gard. 88: 104–134 CrossRefGoogle Scholar
  4. Chiang T.-Y. and Schaal B. (2006). Phylogeography of plants in Taiwan and the Ryukyu Archipelago. Taxon 55: 31–41 CrossRefGoogle Scholar
  5. Drinnan A. N., Crane P. R., Friis E. M. and Pedersen K. R. (1990). Lauraceous flowers from the Potomac Group (mid-Cretaceous) of eastern North America. Bot. Gaz. 151: 370–384 CrossRefGoogle Scholar
  6. Eklund H. (2000). Lauraceous flowers from the Late Cretaceous of North Carolina, U.S.A. Bot. J. Linn. Soc. 132: 397–428 CrossRefGoogle Scholar
  7. Eklund H. and Kvaček J. (1998). Lauraceous inflorescences and flowers from the Cenomanian of Bohemia (Czech Republic, Central Europe). Int. J. Pl. Sci. 159: 668–686 CrossRefGoogle Scholar
  8. Farris J. S., Källersjö M., Kluge A. G. and Bult C. (1994). Testing significance of incongruence. Cladistics 10: 315–319 CrossRefGoogle Scholar
  9. Felsenstein J. (1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Molec. Evol. 17: 368–376 PubMedCrossRefGoogle Scholar
  10. Felsenstein J. (1988). Phylogenies from molecular sequences: inference and reliability. Ann. Rev. Genet. 22: 521–565 PubMedCrossRefGoogle Scholar
  11. Fernald M. L. (1936). The nomenclature of Sassafras. Rhodora 38: 178–179 Google Scholar
  12. Frumin S., Eklund H. and Friis E. M. (2004). Mauldinia hirsuta sp. nov., a new member of the extinct genus Mauldinia (Lauraceae) from the Late Cretaceous (Cenomanian-Turonian) of Kazakhstan. Int. J. Pl. Sci. 165: 883–895 CrossRefGoogle Scholar
  13. Hall T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41: 95–98 Google Scholar
  14. Hemsley W. B. (1891). An enumeration of all the plants known from China proper, Formosa, Hainan, Corea, the Luchu Archipelago and the island of Hongkong, together with their distribution and synonymy. J. Linn. Soc. Bot. 26: 392–393 Google Scholar
  15. Hemsley W. B. (1907). Sassafras in China (Sassafras tzumu, Hemsl.). Bull. Misc. Inform. Kew 2: 55–56 Google Scholar
  16. Herendeen P. S. (1991). Lauraceous wood from the mid-Cretaceous Potomac Group of eastern North America: Paraphyllanthoxylon marylandense sp. nov. Rev. Palaeobot. Palynol. 69: 277–290 CrossRefGoogle Scholar
  17. Hoey M. T. and Parks C. R. (1991). Isozyme divergence between eastern Asian, North American and Turkish species of Liquidambar (Hamamelidaceae). Amer. J. Bot. 78: 938–947 CrossRefGoogle Scholar
  18. Huang S., Chiang Y. C., Schaal B. A., Chou C. H. and Chiang T. Y. (2001). Organelle DNA phylogeography of Cycas taitungensis, a relict species in Taiwan. Molec. Ecol. 10: 2669–2681 CrossRefGoogle Scholar
  19. Huelsenbeck J. P. and Ronquist R. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755 PubMedCrossRefGoogle Scholar
  20. Ickert-Bond S. and Wen J. (2006). Phylogeny and biogeography of Altingiaceae: evidence from combined analysis of five non-coding chloroplast regions. Molec. Phylogenet. Evol. 39: 512–528 PubMedCrossRefGoogle Scholar
  21. Kamikoti S. (1933). Neue und kritische Lauraceen aus Taiwan I. Ann. Rep. Taihoku Bot. Gard. 3: 77–78 Google Scholar
  22. Keng H. (1953). A taxonomic revision of Sassafras (Lauraceae). Quart. J. Taiwan Mus. 6: 78–85 Google Scholar
  23. Lecomte H. (1912). Sur un Pseudosassafras de Chine. Not. Syst. 2: 269–270 Google Scholar
  24. Lee N. S., Sang T., Crawford D. J., Heau S. H. and Kim S. C. (1996). Molecular divergence between disjunct taxa in eastern Asia and eastern North America. Amer. J. Bot. 83: 1373–1378 CrossRefGoogle Scholar
  25. Li H. L. (1963). The woody flora of Taiwan. Livingstone, Narberth Google Scholar
  26. Li H.-W. (1985). Parallel evolution in Litsea and Lindera of Lauraceae. Acta Bot. Yunnan. 7: 129–135 Google Scholar
  27. Li H.-W., Pai P. Y., Lee S. K., Wei F. N., Wei Y. T., Yang Y. C., Huang P. H., Tsui H. P., Shia Z. D. and Li J. L. (1984). Lauraceae. In: Li, H.-W. (eds) Flora of Reipublicae Popularis Sinicae, Vol. 31, pp. Science Press, Beijing Google Scholar
  28. Li J. and Christophel D. C. (2000). Systematic relationships within the Litsea complex (Lauraceae): a cladisitic analysis based on morphological and leaf cuticle data. Austral. J. Bot. 13: 1–13 CrossRefGoogle Scholar
  29. Li J., Christophel D. C., Conran J. G. and Li H. W. (2004). Phylogentic relationships within the `core' Laureae (Litsea complex, Lauraceae) inferred from sequences of the chloroplast gene matK and nuclear ribosomal DNA ITS region. Pl. Syst. Evol. 246: 19–34 CrossRefGoogle Scholar
  30. Linnaeus C. (1753) Species Plantarum 1. Stockholm, p. 371.Google Scholar
  31. Little E. L. (1998). National Audubon Society field guide to North American trees. Chanticleer, New York Google Scholar
  32. Long D. G. (1984). Notes relating to the flora of Bhutan: VIII Lauraceae. Notes Roy. Bot. Gard. Edinburgh 41: 505–525 Google Scholar
  33. Lu C. Y. and Hsu K. J. (1992). Tectonic evolution of the Taiwan mountain belt. Petrol. Geol. Taiwan 27: 21–46 Google Scholar
  34. Milne R. I. and Abbott R. J. (2002). The origin and evolution of tertiary relict floras. Adv. Bot. Res. 38: 281–314 CrossRefGoogle Scholar
  35. Moore L. A. and Willson M. F. (1982). The effect of microhabitat, spatial distribution and display size on dispersal of Lindera benzoin by avian frugivores. Canad. J. Bot. 60: 557–560 Google Scholar
  36. Nie Z.-L., Sun H., Beardsley P. M., Olmstead R. G. and Wen J. (2006a). Evolution of biogeographic disjunction between eastern Asia and eastern North America in Phryma (Phrymaceae). Amer. J. Bot. 92: 1183–1196 Google Scholar
  37. Nie Z.-L., Sun H., Li H. and Wen J. (2006b). Intercontinental biogeography of subfamily Orontioideae (Symplocarpus, Lysichiton, and Orontium) of Araceae in eastern Asia and North America. Molec. Phylogenet. Evol. 40: 155–165 CrossRefGoogle Scholar
  38. Nie Z.-L., Wen J., Sun H. and Bartholomew B. (2005). Monophyly of Kelloggia Torrey ex Benth. (Rubiaceae) and evolution of its intercontinental disjunction between western North America and eastern Asia. Amer. J. Bot. 92: 642–652 Google Scholar
  39. Nuttall T. (1818) The Genera of North American Plants 1. Philadelphia, pp. 259–260.Google Scholar
  40. Parks C. R. and Wendel J. F. (1990). Molecular divergence between Asian and North American species of Liriodendron (Magnoliaceae) with implications for interpretation of fossil floras. Amer. J. Bot. 77: 1243–1256 CrossRefGoogle Scholar
  41. Parrish J. (1993). The paleogeography of the opening South Atlantic. In: George, W. and Lavocat, R. (eds) The Africa–South America connection, pp 8–27. Clarendon Press, Oxford Google Scholar
  42. Poole I., Richter H. G. and Francis J. E. (2000). Evidence for Gondwanan origins for Sassafras (Lauraceae). Late Cretaceous fossil wood of Antarctica. IAWA J. 21: 463–475 Google Scholar
  43. Posada D. and Buckley T. R. (2004). Model selection and model averaging in phylogenetics: advantages of the AIC and Bayesian approaches over likelihood ratio tests. Syst. Biol. 53: 793–808 PubMedCrossRefGoogle Scholar
  44. Presl J. S. (1825). Sassafras. In: Berchtold, F. and Presl, J. S. (eds) O Prirozenosti Rostlin 2, pp 30. K. W. Endersa, Praha Google Scholar
  45. Qian H. and Ricklefs R. E. (2000). Large-scale processes and the Asian bias in temperate plant species diversity. Nature 407: 180–182 PubMedCrossRefGoogle Scholar
  46. Qiu Y. L., Lee J., Bernasconi-Quadroni F., Soltis D. E., Soltis P. S., Zanis M., Zimmer E. A., Chen Z., Savolainen V. and Chase M. W. (1999). The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature 402: 404–407 PubMedCrossRefGoogle Scholar
  47. Rannala B. and Yang Z. H. (1996). Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J. Molec. Evol. 43: 304–311 PubMedGoogle Scholar
  48. Rehder A. (1920). The American and Asiatic species of Sassafras. J. Arnold Arbor. 1: 242–245 Google Scholar
  49. Rohwer J. G. (1993) Lauraceae. In: Kubitzki K., Rohwer J. G., Bittrichs V. (eds.) The families and genera of vascular plants, vol. 2. Springer, pp. 366–391.Google Scholar
  50. Rohwer J. G. (2000). Toward a phylogenetic classification of the Lauraceae: evidence from matK sequences. Syst. Bot. 25: 60–71 CrossRefGoogle Scholar
  51. Rohwer J. G., Richter H. G. and van der Werff H. (1991). Two new genera of Neotropical Lauraceae and critical remarks on the generic delimitation. Ann. Missouri Bot. Gard. 78: 388–400 CrossRefGoogle Scholar
  52. Rohwer J. G. and Rudolph B. (2005). Jumping genera: the phylogenetic positions of Cassytha, Hypodaphnis and Neocinnamomum (Lauraceae) based on different analyses of trnK intron sequences. Ann. Missouri Bot. Gard. 92: 153–178 Google Scholar
  53. Sanderson M. J. (2002). Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Molec. Biol. Evol. 19: 101–109 PubMedGoogle Scholar
  54. Sanderson M. J. (2003) R8s: analysis of rates (“r8s”) of evolution (and other stuff), version1.71. http://ginger.ucdavis.edu/r8s/.Google Scholar
  55. Sclater J., Hellinger S. and Trapscott C. (1977). The paleobathymetry of the Atlantic Ocean from the Jurassic to the present. J. Geol. 85: 509–952 CrossRefGoogle Scholar
  56. Shi S. H., Chang H. T., Chen Y. Q., Qu L. H. and Wen J. (1998). Phylogeny of the Hamamelidaceae based on the ITS sequences of nuclear ribosomal DNA. Biochem. Syst. Ecol. 26: 55–69 CrossRefGoogle Scholar
  57. Sibuet J. C. and Hsu S. K. (1997). Geodynamics of the Taiwan arc-arc collision. Tectonophysics 274: 221–251 CrossRefGoogle Scholar
  58. Sibuet J. C. and Hsu S. K. (2004). How was Taiwan created. Tectonophysics 379: 159–181 CrossRefGoogle Scholar
  59. Teng L. S. (1990). Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics 183: 57–76 CrossRefGoogle Scholar
  60. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F. and Higgins D. G. (1997). The ClustalX Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res. 24: 4876–4882 CrossRefGoogle Scholar
  61. van der Werff H. (2001). An annotated key to the genera of Lauraceae in the Flora Malesiana region. Blumea 46: 125–140 Google Scholar
  62. van der Werff H. and Richter H. G. (1996). Toward an improved classification of Lauraceae. Ann. Missouri Bot. Gard. 83: 409–418 CrossRefGoogle Scholar
  63. Wang J. M. (1987). The Fenwei rift and its recent periodic activity. Tectonophysics 133: 257–275 CrossRefGoogle Scholar
  64. Wang W. P., Hwang C. Y., Lin T. P. and Hwang S. Y. (2003). Historical biogeography and phylogenetic relationships of the genus Chamaecyparis (Cupressaceae) inferred from chloroplast DNA polymorphism. Pl. Syst. Evol. 241: 13–28 CrossRefGoogle Scholar
  65. Wen J. (1999). Evolution of eastern Asian and eastern North American disjunct distributions in flowering plants. Ann. Rev. Ecol. Syst. 30: 421–455 CrossRefGoogle Scholar
  66. Wen J. (2000). Internal transcribed spacer phylogeny of the Asian and eastern North American disjunct Aralia sect. Dimorphanthus (Araliaceae) and its biogeographic implications. Int. J. Pl. Sci. 161: 959–966 CrossRefGoogle Scholar
  67. Wen J. (2001). Evolution of eastern Asian–North American biogeographic disjunctions: a few additional issues. Int. J. Pl. Sci. 162: S117–S122 CrossRefGoogle Scholar
  68. Wen J., Jansen R. K. and Kilgore K. (1996). Evolution of the eastern Asian and eastern North American disjunct genus Symplocarpus (Araceae): insights from chloroplast DNA restriction site data. Biochem. Syst. Ecol. 24: 735–747 CrossRefGoogle Scholar
  69. Wolfe J. A. (1972). An interpretation of Alaskan tertiary floras. In: Graham, A. (eds) Floristicsand paleofloristics of Asia and eastern North America, pp 201–233. Elsevier, Amsterdam Google Scholar
  70. Wolfe J. A. (1975). Some aspects of plant geography of the northern during the late Cretaceous and Tertiary. Ann. Missouri Bot. Gard. 62: 264–279 CrossRefGoogle Scholar
  71. Wood C. E. (1958). The genera of the woody Ranales of the southeastern United States. J. Arnold Arbor. 39: 296–346 Google Scholar
  72. Xiang Q. Y., Soltis D. E., Soltis P. S., Manchester S. R. and Crawford D. J. (2000). Timing the eastern Asian–eastern North American floristic disjunction: molecular clock corroborates paleontological data. Molec. Phylogenet. Evol. 15: 462–472 PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.Laboratory of Biodiversity and BiogeographyKunming Institute of Botany, Chinese Academy of SciencesYunnanP. R. China
  2. 2.Graduate School of Chinese Academy of SciencesBeijingP. R. China
  3. 3.Department of Botany, MRC 166National Museum of Natural History, Smithsonian InstitutionWashington, DCUSA
  4. 4.Laboratory of Systematic and Evolutionary BotanyInstitute of Botany, Chinese Academy of SciencesBeijingP. R. China

Personalised recommendations