Plant Systematics and Evolution

, Volume 266, Issue 3–4, pp 233–252 | Cite as

Placing Biebersteiniaceae, a herbaceous clade of Sapindales, in a temporal and geographic context

  • A. N. MuellnerEmail author
  • D. D. Vassiliades
  • S. S. Renner


Biebersteiniaceae comprise a single genus with four species of perennial herbs occurring from central Asia to Greece. A previous molecular phylogenetic study placed one of the species in an isolated position in Sapindales, while morphological studies had placed Biebersteinia in or near Geraniaceae, albeit doubtfully. We tested the monophyly and placement of the family with data from the chloroplast genes rbcL and atpB obtained for all four species, other major clades of Sapindales and outgroups for a total of up to 114 taxa. Parsimony, Bayesian, and likelihood analyses place Biebersteinia in Sapindales, possibly as sister to the other eight families. Strict and relaxed molecular clocks constrained with fossils of Biebersteinia and up to eight other Sapindales suggest that the Biebersteinia crown group diversified in the Oligocene and Miocene, while the stem lineage dates back to the Late Paleocene. Ages for other sapindalean families are earlier than those obtained in more sparsely sampled analyses, although estimates for Burseraceae agree surprisingly well. Ancestral area analyses suggest that Biebersteinia expanded from the eastern part of its range (i.e. Tibet and Inner Mongolia) to the west, although analyses are hampered by the unclear sister group relationships.


Bayesian relaxed clock Biebersteinia biogeography fossil constraints molecular clock phylogenetics Sapindales 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1998). An ordinal classification for the families of flowering plants. Ann. Missouri Bot. Gard. 85: 531–553 CrossRefGoogle Scholar
  2. (2003). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot. J. Linn. Soc. 141: 399–436 CrossRefGoogle Scholar
  3. Bakker F. R., Vassiliades D. D., Morton C. and Savolainen V. (1998). Phylogenetic relationships of Biebersteinia Stephan (Geraniaceae) inferred from rbcL and atpB sequence comparisons. Bot. J. Linn. Soc. 127: 149–158 Google Scholar
  4. Barron E. J. and Harrison C. G. A. (1980). An analysis of past plate motions; the South Atlantic and Indian oceans. In: Davies, P. A. and Runcorn, S. K. (eds) Mechanisms of continental drift and plate tectonics, pp 89–109. Academic Press, London Google Scholar
  5. Bell C. D. and Donoghue M. J. (2003). Phylogeny and biogeography of Morinaceae (Dipsacales) based on nuclear and chloroplast DNA sequences. Org. Divers. Evol. 3: 227–237 CrossRefGoogle Scholar
  6. Boissier E. (1867) Biebersteiniae. In: Flora Orientalis Vol. 1. H. Georg, Basilee, pp. 899–900.Google Scholar
  7. Bremer K. (1992). Ancestral areas: a cladistic reinterpretation of the center of origin concept. Syst. Biol. 41: 436–445 CrossRefGoogle Scholar
  8. Brenner G. J. (1996). Evidence for the earliest stage of angiosperm pollen evolution: A paleoequatorial section from Israel. In: Taylor, D. W. and Hickey, L. J. (eds) Flowering plant origin, evolution and phylogeny, pp 91–115. Chapman and Hall, New York CrossRefGoogle Scholar
  9. Chase M. W., Morton C. M. and Kallunki J. A. (1999). Phylogenetic relationships of Rutaceae: a cladistic analysis of the subfamilies using evidence from rbcL and atpB sequence variation. Amer. J. Bot. 86: 1191–1199 CrossRefGoogle Scholar
  10. Corbett S. L. and Manchester S. R. (2004). Phytogeography and fossil history of Ailanthus (Simaroubaceae). Int. J. Pl. Sci. 165: 671–690 CrossRefGoogle Scholar
  11. DeVore M. L., Kenrick P., Pigg K. B., Ketcham R. A. (2005) CT-Scanning the London Clay: an excellent noninvasive technique for studying pyritized fossil fruits. Abstract 122, Botany 2005.Google Scholar
  12. Doyle J. J. and Doyle J. L. (1987). A rapid DNA isolation procedure from small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11–15 Google Scholar
  13. Endlicher S. L. (1841). Biebersteiniaceae. In: Enchiridion Botanicum. Leipzig.Google Scholar
  14. Farsam H., Amanlou M., Reza Dehpour A. and Jahaniani F. (2000). Anti-inflammatory and analgesic activity of Biebersteinia multifida DC. root extract. J. Ethnopharmacol. 71: 443–447 PubMedCrossRefGoogle Scholar
  15. Fay M. F., Bayer C., Alverson W., Bruijn A. Y. de, Swensen S. M. and Chase M. W. (1998). Plastid rbcL sequences indicate a close affinity between Diegodendron and Bixa. Taxon 47: 43–50 CrossRefGoogle Scholar
  16. Felsenstein J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 CrossRefGoogle Scholar
  17. Fernando E. S., Gadek P. A. and Quinn C. J. (1995). Simaroubaceae, an artificial construct: evidence from rbcL sequence variation. Amer. J. Bot. 82: 92–103 CrossRefGoogle Scholar
  18. Fitch W. M. (1971). Toward defining the course of evolution: minimal change for a specific tree topology. Syst. Zool. 20: 406–416 CrossRefGoogle Scholar
  19. Ghosh P. K. and Roy S. K. (1979). Chisochetonoxylon benegalensis gen. et sp. nov., a new fossil wood of Meliaceae from the Tertiary beds of Birbhum District, West Bengal, India. Curr. Sci. 48: 737–739 Google Scholar
  20. Graham A. and Jarzen D. M. (1969). Studies in Neotropical paleobotany. I. The Oligocene communities of Puerto Rico. Ann. Missouri Bot. Gard. 56: 308–357 CrossRefGoogle Scholar
  21. Gravendeel B., Schuiteman A. and de Vogel E. F. (2005). Molecular dating and vicariance analysis of Coelogyninae (Orchidaceae). In: Bakker, F. T., Chatrou, L. W., Gravendeel, B., and Pelser, P. B. (eds) Plant-level systematics, new perspectives on pattern & process, pp 131–148. Gantner Verlag, Liechtentstein Google Scholar
  22. Greenham J., Vassiliades D. D., Harborne J. B., Williams C. A., Eagles J., Grayer R. J. and Veitch N. C. (2001). A distinctive flavonoid chemistry for the anomalous genus Biebersteinia. Phytochemistry 56: 87–91 PubMedCrossRefGoogle Scholar
  23. Grierson A. J. C. and Long D. G. (1987). Flora of Bhutan, vol 1, part 3. Royal Botanic Garden Edinburgh, Edinburgh Google Scholar
  24. Hoot S. B., Culham A. and Crane P. R. (1995). The utility of atpB gene sequences in resolving phylogenetic relationships: Comparison within rbcL and 18S ribosomal DNA sequences in the Lardizabalaceae. Ann. Missouri Bot. Gard. 82: 194–207 CrossRefGoogle Scholar
  25. Hughes N. F. (1994). The enigma of angiosperm origins. Cambridge Palaeobiology Series 1. Cambridge University Press, Cambridge Google Scholar
  26. Knuth R. (1912). Biebersteinia Steph. In: Engler, A. (eds) Das Pflanzenreich IV, Vol. 129, pp 546–549. H. R. Engelmann, Berlin Google Scholar
  27. Lee T.-Y. and Lawver L. A. (1995). Cenozoic plate reconstruction of the southeast Asia regions. Tectonophysics 251: 85–138 CrossRefGoogle Scholar
  28. Linder H. P., Hardy C. R. and Rutschmann F. (2005). Taxon sampling effects in molecular clock dating: An example from the African Restionaceae. Molec. Phylogenet. Evol. 35: 569–582 PubMedCrossRefGoogle Scholar
  29. MacGinitie H. D. (1969). The Eocene Green River flora of northwestern Colorado and northeastern Utah. Univ. Calif. Publ. Geol. Sci. 83: 1–203 Google Scholar
  30. MacGinitie, H. D. (1953) Fossil plants of the Florissant Beds, Colorado. Carnegie Institute of Washington, Publication 599, Washington, DC.Google Scholar
  31. McClain A. M. and Manchester S. R. (2001). Dipteronia (Sapindaceae) from the Tertiary of North America and implications for the phytogeographic history of the Aceroideae. Amer. J. Bot. 88: 1316–1325 CrossRefGoogle Scholar
  32. McLoughlin S. (2001). The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. Austral. J. Bot. 49: 271–300 CrossRefGoogle Scholar
  33. Miceli N., Taviano M. F., Tzakou O., Yannitsaros A., Vassiliades D., Giuffrida D. and Galati E. M. (2005). Biebersteinia orphanidis Boiss. shows antioxidant and anti-inflammatory activity. Phcog. Mag. 1: 54–58 Google Scholar
  34. Muellner A. N., Samuel R., Johnson S. A., Cheek M., Pennington T. D. and Chase M. W. (2003). Molecular phylogenetics of Meliaceae based on nuclear and plastid DNA sequences. Amer. J. Bot. 90: 471–480 CrossRefGoogle Scholar
  35. Muellner A. N., Savolainen V., Samuel R. and Chase M. W. (2006). The mahogany family “out-of-Africa”: divergence time estimation, global biogeographic patterns inferred from plastid rbcL DNA sequences, extant and fossil distribution of diversity. Molec. Phylogenet. Evol. 40: 236–250 PubMedCrossRefGoogle Scholar
  36. Ngamriabsakul C., Newman M. F. and Cronk Q. C. B. (2000). Phylogeny and disjunction in Roscoea (Zingiberaceae). Edinb. J. Bot. 57: 39–61 CrossRefGoogle Scholar
  37. Olmstead R. G., Michaels H. J., Scott K. M. and Palmer J. D. (1992). Monophyly of the Asteridae and identification of their major lineages inferred from DNA sequences of rbcL. Ann. Missouri Bot. Gard. 79: 249–265 CrossRefGoogle Scholar
  38. Palmer A. R., Geissman J. (1999) Geologic time scale. The Geological Society of America. Available at:
  39. Posada D. and Crandall K. A. (1998). Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817–818 PubMedCrossRefGoogle Scholar
  40. Rambaut A., Charleston M. (2000) Phylogenetic Tree Editor v1.0 alpha 4–61. http://evolve.
  41. Reid E. M. and Chandler M. E. J. (1933). The London Clay Flora. British Museum (Natural History), London, UK Google Scholar
  42. Ronquist F. (1996) DIVA version 1.1. Computer program and manual available from Uppsala University (
  43. Ronquist F. (1997). Dispersal-vicariance analysis: a new approach to the quantification of historical biogeography. Syst. Biol. 46: 195–203 CrossRefGoogle Scholar
  44. Ronquist F. and Huelsenbeck J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574 PubMedCrossRefGoogle Scholar
  45. Salamin N., Chase M. W., Hodkinson T. R. and Savolainen V. (2003). Assessing internal support with large phylogenetic DNA matrices. Molec. Phylogenet. Evol. 27: 528–539 PubMedCrossRefGoogle Scholar
  46. Sanderson M. J. (1997). A nonparametric approach to estimating divergence times in the absence of rate constancy. Molec. Biol. Evol. 14: 1218–1232 Google Scholar
  47. Sanderson M. J. (1998). Estimating rate and time in molecular phylogenies: beyond the molecular clock?. In: Soltis, D. E., Soltis, P. S. and Doyle, J. J. (eds) Molecular systematics of plants II: DNA sequencing, pp 242–264. Kluwer, Boston, Massachusetts, USA Google Scholar
  48. Sanderson M. J., Donoghue M. J., Piel W. H. and Eriksson T. (1994). TreeBASE: A prototype database of phylogenetic analyses and an interactive tool for browsing the phylogeny of life. Amer. J. Bot. 81: 183 CrossRefGoogle Scholar
  49. Sanderson M. J., Thorne J. L., Wikström N. and Bremer K. (2004). Molecular evidence on plant divergence times. Amer. J. Bot. 91: 1656–1665 CrossRefGoogle Scholar
  50. Schönbeck-Temesy E. (1970). Geraniaceae: Biebersteinia. In: Rechinger, K. H. (eds) Flora Iranica, pp 63–64. Akademische Druck- u. Verlagsanstalt, Graz Google Scholar
  51. Soltis P. S., Soltis D. E., Chase M. W. (1999) Angiosperm phylogeny inferred from multiple genes: a research tool for comparative biology. Nature: 402–404.Google Scholar
  52. Soltis D. E. (2000). Angiosperm phylogeny inferred from a combined dataset of 18S rDNA, rbcL and atpB sequences. Bot. J. Linn. Soc. 133: 381–461 Google Scholar
  53. Song Z.-C., Wang W.-M. and Fei H. (2004). Fossil pollen records of extant angiosperms in China. Bot. Rev. 70: 425–458 CrossRefGoogle Scholar
  54. Stamatakis A. (2006). RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690 PubMedCrossRefGoogle Scholar
  55. Stephan F. (1806). Déscription de deux nouveaux genres de plantes. Mém. Soc. Nat. Mosc. 1: 125–128 Google Scholar
  56. Swofford D. L. (2002). PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4. Sinauer Associates, Sunderland, Massachusetts, USA Google Scholar
  57. Summerfield M. A. (1991). Global geomorphology. Prentice Hall, USA, 71–72 Google Scholar
  58. Takhtajan A. (1986). Floristic regions of the world. University of California Press, Berkeley Los Angeles Google Scholar
  59. Takhtajan A. (1997). Diversity and classification of flowering plants. Columbia University Press, New York Google Scholar
  60. Thorne J. L. and Kishino H (2002). Divergence time estimation and rate evolution with multilocus data sets. Syst. Biol. 51: 689–702 PubMedCrossRefGoogle Scholar
  61. Tzakou O., Yannitsaros A. and Vassiliades D. (2001). Investigation of the C16:3/C18:3 fatty acid balance in leaf tissues of Biebersteinia orphanidis Boiss. (Biebersteiniaceae). Biochem. Syst. Ecol. 29: 765–767 PubMedCrossRefGoogle Scholar
  62. Vassiliades D. and Yannitsaros A. (2000). Orphanides's best discovery. Bot. Chron. 13: 241–248 Google Scholar
  63. Vidya T. N. C., Fernando P., Melnick D. J. and Sukumar R. (2005). Population genetic structure and conservation of Asian elephants (Elephas maximus) across India. Animal Conservation 8: 377–388 CrossRefGoogle Scholar
  64. Weeks A., Daly D. C. and Simpson B. B. (2005). The phylogenetic history and biogeography of the frankincense and myrrh family (Burseraceae) based on nuclear and chloroplast sequence data. Molec. Phylogenet. Evol. 35: 85–101 PubMedCrossRefGoogle Scholar
  65. Wikström N., Savolainen V. and Chase M. W. (2001). Evolution of the angiosperms: calibrating the family tree. Proc. Roy. Soc. Lond. B 268: 2211–2220 CrossRefGoogle Scholar
  66. Yang Z. (1997). PAML: a program package for phylogenetic analysis by maximum likelihood. Comp. Appl. BioSci. 13: 555–556 PubMedGoogle Scholar
  67. Zhang X. F., Hu B. L. and Zhou B. N. (1995). Studies on the active constituents of Tibetan herb Biebersteinia heterostemon Maxim. Acta Pharmaceutica Sin. 30: 211–214 Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • A. N. Muellner
    • 1
    • 2
    Email author
  • D. D. Vassiliades
    • 3
  • S. S. Renner
    • 4
  1. 1.Molecular Systematics Section, Jodrell LaboratoryRoyal Botanic Gardens KewRichmondUnited Kingdom
  2. 2.Department of Botany and Molecular Evolution, Grunelius-Moellgaard LaboratoryResearch Institute SenckenbergFrankfurtGermany
  3. 3.AthensGreece
  4. 4.Department of BiologyUniversity of MunichMunichGermany

Personalised recommendations