Plant Systematics and Evolution

, Volume 266, Issue 1–2, pp 119–145 | Cite as

Phylogeny of subtribe Pyrinae (formerly the Maloideae, Rosaceae): Limited resolution of a complex evolutionary history

  • C. S. CampbellEmail author
  • R. C. Evans
  • D. R. Morgan
  • T. A. Dickinson
  • M. P. Arsenault


Generic relationships in the Pyrinae (equivalent to subfamily Maloideae) were assessed with six chloroplast regions and five nuclear regions. We also plotted 12 non-molecular characters onto molecular phylogenies. Chloroplast DNA trees are incongruent with those from nuclear regions, as are most nuclear regions with one another. Some of this conflict may be the result of hybridization, which occurs between many genera of Pyrinae in the present and may have occurred in the past, and duplication of nuclear loci. Sequence divergence between genera of Pyrinae, which is significantly less than that between genera of another large clade in Rosaceae, the Rosoideae, is concentrated in terminal branches, with short internal branches. This pattern is consistent with an ancient, rapid radiation, which has also been hypothesized from the fossil record. Even with about 500,000 bp of sequence, our results resolve only several small groups of genera and leave much uncertainty about phylogenetic relationships within Pyrinae.


Rapid ancient radiation cpDNA GBSSI hybridization gene duplication Pyrodae Pyreae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aldasoro J. J., Aedo C. and Navarro C. (2005). Phylogenetic and phytogeographical relationships in Maloideae (Rosaceae) based on morphological and anatomical characters. Blumea 50: 3–15 Google Scholar
  2. Campbell C. S., Baldwin B. G., Donoghue M. J. and Wojciechowski M. F. (1995). A phylogeny of the genera of Maloideae (Rosaceae): Evidence from Internal Transcribed Spacers of nuclear ribosomal DNA sequences and congruence with morphology. Amer. J. Bot. 82: 903–918 CrossRefGoogle Scholar
  3. Challice J. (1973). Phenolic compounds of the subfamily Pomoideae: A chemotaxonomic survey. Phytochemistry 12: 1095–1101 CrossRefGoogle Scholar
  4. Challice J. S. (1974). Rosaceae chemotaxonomy and the origins of the Pomoideae. Bot. J. Linn. Soc. 69: 239–259 Google Scholar
  5. Challice J. and Kovanda M. (1978). Flavonoids as markers of taxonomic relationships in the genus Sorbus in Europe. Preslia 50: 305–320 Google Scholar
  6. Chevreau E., Lespinasse Y. and Gallet M. (1985). Inheritance of pollen enzymes and polyploid origin of apple (Malus x domestica Borkh.). Theor. Appl. Genet. 71: 268–277 Google Scholar
  7. Donoghue M. J. and Sanderson M. J. (1992). The suitability of molecular and morphological evidence in reconstructing plant phylogeny. In: Soltis, D. E., Soltis, P. S. and Doyle, J. J. (eds) Molecular systematics of plants, pp 340–368. Chapman and Hall, New York Google Scholar
  8. Doyle J. J. and Doyle J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11–15 Google Scholar
  9. Evans R. C. (1999) Molecular, morphological, and ontogenetic evaluation of relationships and evolution in Rosaceae. Ph.D. thesis, Botany Department, University of Toronto.Google Scholar
  10. Evans R. C., Alice L. A., Campbell C. S., Kellogg E. A. and Dickinson T. A. (2000). The granule-bound starch synthase (GBSSI) gene in Rosaceae: multiple putative loci and phylogenetic utility. Molec. Phylogenet. Evol. 17: 388–400 PubMedCrossRefGoogle Scholar
  11. Evans R. C. and Campbell C. S. (2002). The origin of the apple subfamily (Rosaceae: Maloideae) is clarified by DNA sequence data from duplicated GBSSI Genes. Amer. J. Bot. 89: 1478–1484 Google Scholar
  12. Evans R. C. and Dickinson T. A. (1999). Floral ontogeny and morphology in subfamily Spiraeoideae Endl. (Rosaceae). Int. J. Pl. Sci. 160: 981–1012 CrossRefGoogle Scholar
  13. Evans R. C. and Dickinson T. A. (2005). Floral ontogeny and morphology in Gillenia (``Spiraeoideae'') and subfamily Maloideae C. Weber (Rosaceae). Int. J. Pl. Sci. 166: 427–447 CrossRefGoogle Scholar
  14. Farr D. F. (1989). Fungi on plants and plant products in the United States. APS Press, St. Paul, Minn Google Scholar
  15. Farr D. F., Rossman A. Y., Palm M. E., McCray E. B. (2005) Fungal databases, Systematic Botany & Mycology Laboratory. Agricultural Research Service, United States Dept. of Agriculture.Google Scholar
  16. Felsenstein J. (1978). Cases in which parsimony and compatibility methods will be positively misleading. Syst. Zool. 27: 401–410 CrossRefGoogle Scholar
  17. Felsenstein J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783–791 CrossRefGoogle Scholar
  18. Fiala K. I. and Sokal R. R. (1985). Factors determining the accuracy of cladogram estimation: evaluation using computer simulation. Evolution 39: 609–622 CrossRefGoogle Scholar
  19. Fishbein M., Hibsch-Jetter C., Soltis D. E. and Hufford L. (2001). Phylogeny of Saxifragales (angiosperms, eudicots): analysis of a rapid, ancient radiation. Syst. Biol. 50: 817–847 PubMedCrossRefGoogle Scholar
  20. Fishbein M. and Soltis D. E. (2004). Further resolution of the rapid radiation in Saxifragales (angiosperms, eudicots) supported by mixed-model Bayesian analysis. Syst. Bot. 29: 883–891 CrossRefGoogle Scholar
  21. Godron D. A. (1874). De l'hybridité dans le genre Sorbier. Rev. Sci. Nat. 4: 443–447 Google Scholar
  22. Graham S. (1997) Phylogenetic analyses of breeding-system evolution in heterostylous monocotyledons. Ph.D. thesis, Botany Department, University of Toronto.Google Scholar
  23. Hasegawa M., Kishino H. and Yano T. (1985). Dating of the human-ape split by a molecular clock of mitochondrial DNA. J. Molec. Evol. 21: 160–174 CrossRefGoogle Scholar
  24. Huelsenbeck J. P. (1995). Performance of phylogenetic methods in simulation. Syst. Biol. 44: 17–48 CrossRefGoogle Scholar
  25. Hutchinson J. (1964). The genera of flowering plants, vol. 1, Dicotyledons. Clarendon Press, Oxford Google Scholar
  26. Ishikawa S., Kato S., Imakawa S., Mikami T. and Shimamoto Y. (1992). Organelle DNA polymorphisms in cultivated apple and rootstocks. Theor. Appl. Genet. 83: 963–967 CrossRefGoogle Scholar
  27. Jones G. N. (1946). American species of Amelanchier. Urbana, Illinois Google Scholar
  28. Kalkman C. (1973). The Malesian species of the subfamily Maloideae (Rosaceae). Blumea 21: 413–442 Google Scholar
  29. Kalkman C. (2004). Rosaceae. In: Kubitzki, K. (eds) The families and genera of vascular plants, pp 343–386. Springer, Berlin Google Scholar
  30. Kovanda M. (1965). On the generic limits in the Maloideae. Preslia 37: 27–34 Google Scholar
  31. Liljefors A. (1934). Űber normale und apospore Embryosackentwicklung in der Gattung Sorbus, nebst einigen Bemerkungen űber die Chromosomenzahlen. Svensk Bot. Tidskr. 28: 290–299 Google Scholar
  32. Liljefors A. (1953). Studies on propagation, embryology and pollination in Sorbus. Acta Horti Berg. 16: 277–329 Google Scholar
  33. Linder C. R. and Rieseberg L. H. (2004). Reconstructing patterns of reticulate evolution in plants. Amer. J. Bot. 91: 1700–1708 Google Scholar
  34. Lo E., Stefanovic S., Dickinson T. A., in press. Crataegus and Mespilus (Pyreae, Rosaceae) – two genera or one? Syst. Bot.Google Scholar
  35. McDade L. A. (1995). Hybridization and phylogenetics. In: Hoch, P. C. and Stephenson, A. G. (eds) Experimental and molecular approaches to plant biosystematics, pp 305–331. Missouri Botanical Garden, St. Louis Google Scholar
  36. Morgan D. R., Soltis D. E. and Robertson K. R. (1994). Systematic and evolutionary implications of rbcL sequence variation in Rosaceae. Amer. J. Bot. 81: 890–903 CrossRefGoogle Scholar
  37. Nelson-Jones E. B., Briggs D. and Smith A. G. (2002). The origin of intermediate species of the genus Sorbus. Theor. Appl. Genet. 105: 953–963 PubMedCrossRefGoogle Scholar
  38. Oddou-Muratorio S., Petit R. J., Guerroue B. L., Guesnet D. and Demesure B. (2001). Pollen- versus seed-mediated gene flow in a scattered forest tree species. Evolution 55: 1123–1135 PubMedGoogle Scholar
  39. Petit R. J., Pineau E., Demesure B., Bacillieri R., Ducousso A., Kremer A. (1997) Chloroplast DNA footprints of postglacial recolonization by oaks. Proc. Natl. Acad. Sci. USA 94.Google Scholar
  40. Phipps J. B., Robertson K. R., Rohrer J. R. and Smith P. G. (1991). Origins and evolution of subfamily Maloideae (Rosaceae). Syst. Bot. 16: 303–332 CrossRefGoogle Scholar
  41. Posada D. and Crandall K. A. (1998). Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817–818 PubMedCrossRefGoogle Scholar
  42. Potter D., Eriksson T., Evans R. C., Oh S.-H., Smedmark J., Morgan D., Kerr M., Robertson K. R., Arsenault M., Dickinson T. A., Campbell C. S., In press. Phylogeny and classification of Rosaceae. Pl. Syst. Evol. 266: 5–43.Google Scholar
  43. Rambaut A. (2002). Se-Al: sequence alignment editor. University of Oxford, Oxford, England Google Scholar
  44. Raspé O. A., Jacquemart L. and De Sloover J. (1998). Isozymes in Sorbus aucuparia (Rosaceae: Maloideae): genetic analysis and evolutionary significance of zymograms. Int. J. Pl. Sci. 159: 627–636 CrossRefGoogle Scholar
  45. Raspé O. and Kohn J. R. (2002). S-allele diversity in Sorbus aucuparia and Crataegus monogyna (Rosaceae: Maloideae). Heredity 88: 458–465 PubMedCrossRefGoogle Scholar
  46. Rieseberg L. H. and Soltis D. E. (1991). Phylogenetic consequences of cytoplasmic gene flow in plants. Evol. Trends Pl. 5: 65–84 Google Scholar
  47. Robertson K. R., Phipps J. B., Rohrer J. R. and Smith P. G. (1991). A synopsis of genera of the Maloideae (Rosaceae). Syst. Bot. 16: 376–394 CrossRefGoogle Scholar
  48. Roemer M. J. (1847) Familiarum naturalium regni vegetabilis synopses monographicae. III. Rosi-florae. Amygdalacearum et Pomacearum. Weimar, Landes-Industrie-Comptoir.Google Scholar
  49. Rohrer J. R., Robertson K. R. and Phipps J. B. (1991). Variation in structure among fruits of Maloideae (Rosaceae). Amer. J. Bot. 78: 1617–1635 CrossRefGoogle Scholar
  50. Rohrer J. R., Robertson K. R. and Phipps J. B. (1994). Floral morphology of Maloideae (Rosaceae) and its systematic relevance. Amer. J. Bot. 81: 574–581 CrossRefGoogle Scholar
  51. Rokas A., Kruger D. and Carroll S. B. (2005). Animal evolution and molecular signature of radiation compressed in time. Science 310: 1933–1938 PubMedCrossRefGoogle Scholar
  52. Ronquist F. and Huelsenbeck J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574 PubMedCrossRefGoogle Scholar
  53. Sang T. (2002). Utility of low-copy nuclear gene sequences in plant phylogenetics. Crit. Rev. Biochem. Molec. Biol. 37: 121–147 CrossRefGoogle Scholar
  54. Savile D. B. O. (1979). Fungi as aids in higher plant classification. Bot. Rev. 45: 380–495 CrossRefGoogle Scholar
  55. Sax K. (1931). The origin and relationships of the Pomoideae. J. Arnold Arbor. 12: 3–22 Google Scholar
  56. Sax K. (1932). Chromosome relationships in the Pomoideae. J. Arnold Arbor. 13: 363–367 Google Scholar
  57. Sax K. (1933). The origin of the Pomoideae. Proc. Amer. Soc. Hort. Sci. 30: 147–150 Google Scholar
  58. Simmmons M. P. and Ochoterena H. (2000). Gaps as characters in sequence-based phylogenetic analyses. Syst. Biol. 49: 369–381 CrossRefGoogle Scholar
  59. Spjut R. W. (1994). A systematic treatment of fruit types. Bronx, New York Google Scholar
  60. Sterling C. (1964). Comparative morphology of the carpel in the Rosaceae. III. Pomoideae: Crataegus, Hesperomeles, Mespilus, Osteomeles. Amer. J. Bot. 51: 705–712 CrossRefGoogle Scholar
  61. Sterling C. (1965a). Comparative morphology of the carpel in the Rosaceae. IV. Pomoideae: Chamaemeles, Cotoneaster, Dichotomanthes, Pyracantha. Amer. J. Bot. 52: 47–54 CrossRefGoogle Scholar
  62. Sterling C. (1965b). Comparative morphology of the carpel in the Rosaceae. V. Pomoideae: Amelanchier, Aronia, Malacomeles, Malus, Peraphyllum, Pyrus, Sorbus. Amer. J. Bot. 52: 418–426 CrossRefGoogle Scholar
  63. Sterling C. (1965c). Comparative morphology of the carpel in the Rosaceae. VI. Pomoideae: Eriobotrya, Heteromeles, Photinia, Pourthiaea, Raphiolepis, Stranvaesia. Amer. J. Bot. 52: 938–946 CrossRefGoogle Scholar
  64. Sterling C. (1966). Comparative morphology of the carpel in the Rosaceae. VII. Pomoideae: Chaenomeles, Cydonia, Docynia. Amer. J. Bot. 53: 225–231 CrossRefGoogle Scholar
  65. Swofford D. L. (2001). PAUP*: Phylogenetic Analysis Using Parsimony. Sinauer Associates, Inc, Sunderland, MA Google Scholar
  66. Talent N. and Dickinson T. A. (2005). Polyploidy in Crataegus and Mespilus (Rosaceae, Maloideae): evolutionary inferences from flow cytometry of nuclear DNA amounts. Canad. J. Bot. 83: 1268–1304 CrossRefGoogle Scholar
  67. Vidal J. E. (1965). Notes sur quelques Rosacées Asiatique (II) (Photinia, Stranvaesia). Adansonia 5: 221–237 Google Scholar
  68. Weeden N. and Lamb R. (1987). Genetics and linkage analysis of 19 isozyne loci in apple. J. Amer. Hort. Soc. 112: 865–872 Google Scholar
  69. Wilson M. A., Grant B. and Clegg M. T. (1990). Chloroplast DNA evolves slowly in the palm family (Arecaceae). Molec. Biol. Evol. 7: 303–314 PubMedGoogle Scholar
  70. Wolfe J. A. and Wehr W. (1988). Rosaceous Chamaebatiaria-like foliage from the Paleogene of western North America. Aliso 12: 177–200 Google Scholar
  71. Yang Z. (1994a). Phylogenetic analysis using parsimony and likelihood methods. J. Molec. Evol. 39: 294–307 Google Scholar
  72. Yang Z. (1994b). Estimating the pattern of nucleotide substitution. Molec. Evol. 39: 105–111 Google Scholar
  73. Zhang L. Q., Pond S. K. and Gaut B. S. (2001). A survey of the molecular evolutionary dynamics of twenty-five multigene families from four grass taxa. J. Molec. Evol. 52: 144–156 PubMedGoogle Scholar
  74. Zhang S.-Y. (1992). Wood anatomy of the Rosaceae. Rijksherbarium/Hortus Botanicus, Leiden Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • C. S. Campbell
    • 1
    Email author
  • R. C. Evans
    • 2
  • D. R. Morgan
    • 3
  • T. A. Dickinson
    • 4
  • M. P. Arsenault
    • 1
  1. 1.Department of Biological SciencesUniversity of MaineOronoUSA
  2. 2.Department of BiologyAcadia UniversityWolfvilleCanada
  3. 3.Department of BiologyUniversity of West GeorgiaCarrolltonUSA
  4. 4.Royal Ontario Museum, Botany SectionTorontoCanada

Personalised recommendations