Plant Systematics and Evolution

, Volume 266, Issue 1–2, pp 105–118 | Cite as

Phylogenetic relationships in tribe Spiraeeae (Rosaceae) inferred from nucleotide sequence data

  • D. Potter
  • S. M. Still
  • T. Grebenc
  • D. Ballian
  • G. Božič
  • J. Franjiæ
  • H. Kraigher


Tribe Spiraeeae has generally been defined to include Aruncus, Kelseya, Luetkea, Pentactina, Petrophyton, Sibiraea, and Spiraea. Recent phylogenetic analyses have supported inclusion of Holodiscus in this group. Spiraea, with 50-80 species distributed throughout the north temperate regions of the world, is by far the largest and most widespread genus in the tribe; the remaining genera have one to several species each. Phylogenetic analyses of nuclear ITS and chloroplast trnL-trnF nucleotide sequences for 33 species representing seven of the aforementioned genera plus Xerospiraea divided the tribe into two well supported clades, one including Aruncus, Luetkea, Holodiscus, and Xerospiraea, the second including the other genera. Within Spiraea, none of the three sections recognized by Rehder based on inflorescence morphology is supported as monophyletic. Our analyses suggest a western North American origin for the tribe, with several biogeographic events involving vicariance or dispersal between the Old and New Worlds having occurred within this group.


Biogeography Spiraeoideae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bharathan G., Goliber T. E., Moore C., Kessler S., Pham T. and Sinha N. R. (2002). Homologies in leaf form inferred from KNOXI gene expression during development. Science 296: 1858–1860 PubMedCrossRefGoogle Scholar
  2. Bortiri E., Oh S., Jiang J., Baggett S., Granger A., Weeks C., Buckingham M., Potter D. and Parfitt D. (2001). Phylogeny and systematics of Prunus (Rosaceae) as determined by sequence analysis of ITS and the chloroplast trnL-trnF spacer DNA. Syst. Bot. 26: 797–807 Google Scholar
  3. de Candolle A. P. (1825) Prodromus systematis naturalis regni vegetabilis, sive, Enumeratio contracta ordinum generum specierumque plantarum huc usque cognitarium, juxta methodi naturalis, normas digesta. 2: 541. Treuttel et Würtz, Paris.Google Scholar
  4. Doyle J. J. and Doyle J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11–15 Google Scholar
  5. Evans R. C. and Dickinson T. A. (1999). Floral ontogeny and morphology in subfamily Spiraeoideae Endl. (Rosaceae). Int. J. Pl. Sci. 160: 981–1012 CrossRefGoogle Scholar
  6. Henrickson J. (1985). Xerospiraea, a generic segregate of Spiraea (Rosaceae) from Mexico. Aliso 11: 199–211 Google Scholar
  7. Hooker W. J. (1834). Flora Boreali-Americana. I. H. G. Bohn, London Google Scholar
  8. Huelsenbeck J. P. and Ronquist F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755 PubMedCrossRefGoogle Scholar
  9. Hutchinson J. (1964). The genera of flowering plants, vol. 1, Dicotyledons. Clarendon Press, Oxford Google Scholar
  10. Kim M., Pham T., Hamidi A., McCormick S., Kuzoff R. K. and Sinha N. (2003). Reduced leaf complexity in tomato wiry mutants suggests a role for PHAN and KNOX genes in generating compound leaves. Development 130: 4405–4415 PubMedCrossRefGoogle Scholar
  11. Kuntze O. (1891). Revisio Generum Plantarum 1: 1–375 Google Scholar
  12. Lingdi L. and Alexander C. (2003). Spiraea. In: Zhengyi, W., Raven, P. H. and Deyuan, H. (eds) Flora of China, vol. 9, pp 47–73. Missouri Botanical Garden Press, St. Louis Google Scholar
  13. Linnaeus C. (1753) Species Plantarum I, 1st ed. Stockholm.Google Scholar
  14. Maddison W. P. and Maddison D. R. (1999). MacClade, version 3.08. Analysis of phylogeny and character evolution. Sinauer Associates, Inc., Sunderland, Massachusetts Google Scholar
  15. Masamune G. (1932). Genera plantarum formosamarum. Annual Rep. Taihoku Bot. Gard. 2: 123 Google Scholar
  16. Maximowicz C. J. (1879). Adnotationes de spiraeaces. Trudy Imp. S.-Peterburgsk. Bot. Sada 6: 105–261 Google Scholar
  17. Morgan D. R., Soltis D. E. and Robertson K. R. (1994). Systematic and evolutionary implications of rbcL sequence variation in Rosaceae. Amer. J. Bot. 81: 890–903 CrossRefGoogle Scholar
  18. Nylander J. A. A. (2005) MrAIC, version 1.4., available at
  19. Potter D., Eriksson T., Evans R. C., Oh S., Smedmark J., Morgan D. R., Kerr M., Robertson K. R., Arsenault M. and Campbell C. S. (2007). Phylogeny and classification of Rosaceae. Pl. Syst. Evol. 266: 5–43 CrossRefGoogle Scholar
  20. Potter D., Gao F., Bortiri P. E., Oh S. and Baggett S. (2002). Phylogenetic relationships in Rosaceae inferred from chloroplast matK and trnL-trnF nucleotide sequence data. Pl. Syst. Evol. 231: 77–89 CrossRefGoogle Scholar
  21. Poyarkova A. I. (1939). Spiraeoideae. In: Borisova, A. G., Komarov, V. L., Krishtofovich, A. N., Lozina-Lozinskaya, A. S., Maleev, V. P., Palibin, I. V., Poyarkova, A. I., Tsinzerling, Yu. D. and Yuzepchuk, S. V. (eds) Flora of the U.S.S.R, pp 216–245. Izdatel-stvo Akademii Nauk SSSR, Moscow Google Scholar
  22. Rehder A. (1940). Manual of cultivated trees and shrubs. Dioscorides Press, Portland Google Scholar
  23. Rydberg P. A. (1900). Catalogue of the flora of Montana. Mem. New York Bot. Gard. 1: 1–492 Google Scholar
  24. Schulze-Menz G. K. (1964). Rosaceae. In: Melchior, H. (eds) Engler's Syllabus der Pflanzenfamilien II, pp 209–218. Gebrüder Borntraeger, Berlin Google Scholar
  25. Swofford D. L. (2002). PAUP* Phylogenetic Analysis Using Parsimony (* and Other Methods) Version 4. Sinauer Associates, Sunderland, Massachusetts Google Scholar
  26. Taberlet P., Gielly L., Pautou G. and Bouvet J. (1991). Universal primers for amplification of three non-coding regions of chloroplast DNA. Pl. Molec. Biol. 17(5): 1105–1109 CrossRefGoogle Scholar
  27. Takhtajan A. (1997). Diversity and classification of flowering plants. Columbia University Press, New York Google Scholar
  28. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F. and Higgins D. G. (1997). The CLUSTALX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acids Res. 25: 4876–4882 PubMedCrossRefGoogle Scholar
  29. Watson S. (1890a). Contributions to American botany. IX. Proc. Am. Acad. Arts 25: 124–163 Google Scholar
  30. Watson S. (1890b). On the genus Eriogynia Bot. Gaz. 15: 241–242 CrossRefGoogle Scholar
  31. White T. J., Bruns T., Lee S. and Taylor J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M. A., Gelfand, D. H., Sninsky, J. J., and White, T. J. (eds) PCR protocols: a guide to methods and applications, pp 315–322. Academic Press, San Diego Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • D. Potter
    • 1
  • S. M. Still
    • 1
  • T. Grebenc
    • 2
  • D. Ballian
    • 3
  • G. Božič
    • 2
  • J. Franjiæ
    • 4
  • H. Kraigher
    • 2
  1. 1.Department of Plant Sciences, Mail Stop 2University of CaliforniaDavisUSA
  2. 2.Department for Forest Physiology and Genetics & Research / Program Group: Forest Biology, Ecology and TechnologySlovenian Forestry InstituteLjubljanaSlovenia
  3. 3.Faculty of ForestryUniversity of SarajevoSarajevoBosnia and Herzegovina
  4. 4.Faculty of ForestryUniversity of ZagrebZagrebCroatia

Personalised recommendations