Plant Systematics and Evolution

, Volume 266, Issue 1–2, pp 91–103

Consequences of the pollination system on genetic structure and patterns of species distribution in the Andean genus Polylepis (Rosaceae): a comparative study

Article

Abstract

As a member of the Sanguisorbinae, taxonomically complicated Polylepis Ruiz & Pav. from the South American Andes is one of the few wind-pollinated genera of Rosaceae. Here, it is suggested that problems traditionally faced in species delimitation and phylogeny reconstruction may be in part due to a combination of weak reproductive barriers and the large distances that can be covered by genetic information as a result of wind pollination. The pattern of species distribution as well as molecular data (AFLP) of Polylepis were contrasted with those of an unrelated, insect-pollinated genus of similar species number and distribution, Minthostachys (Griseb.) Spach (Lamiaceae). In the present case, extensive pollen-mediated gene flow may explain the homogenization of genetic variability over larger distances and a lower number of species restricted to individual countries in the wind-pollinated genus Polylepis, but more examples will have to be studied before arriving at final conclusions.

Keywords

AFLP genetic structure Minthostachys pollination Polylepis Rosaceae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams W. T. and Burczyk J. (2000). Magnitude and implications of gene flow in gene conservation reserves. In: Young, A., Boyle, T. and Boshier, D. (eds) Forest conservation genetics, pp 215–224. CSIRO Publishing, Collingwood, Australia Google Scholar
  2. Beekman M. and Ratnieks F. L. W. (2000). Long-range foraging by the honey-bee, Apis mellifera L. Funct. Ecol. 14: 490–496 CrossRefGoogle Scholar
  3. Bitter G. (1911). Revision der Gattung Polylepis. Bot. Jahrb. Syst. 45: 564–656 Google Scholar
  4. Braun G. (1988) Verbreitung und Ökologie der Gattung Polylepis in den Anden – unter besonderer Berücksichtigung des Vulkan Sajama in der Westkordillere Boliviens. Thesis, Geographisches Institut der Rheinischen Friedrich-Wilhelms-Universität.Google Scholar
  5. Burczyk J., DiFazio S. P. and Adams W. T. (2004). Gene flow in forest trees: How far do genes really travel. For. Genet. 11: 1–14 Google Scholar
  6. Dawson J. W. (1960). Natural Acaena hybrids in the vicinity of Wellington. Trans. Roy. Soc. New Zealand. 88: 13–27 Google Scholar
  7. Di-Giovanni F., Kevan P. G. and Arnold J. (1996). Lower planetary boundary layer profiles of atmospheric conifer pollen above a seed orchard in northern Ontario, Canada. For. Ecol. Manage. 83: 87–97 CrossRefGoogle Scholar
  8. Dow B. D. and Ashley M. V. (1998). High levels of gene flow in Bur Oak revealed by paternity analysis using microsatellites. J. Hered. 89: 62–70 CrossRefGoogle Scholar
  9. Ellenberg H. (1958). Wald oder Steppe? Die natürliche Pflanzendecke der Anden Perus. Umschau 1958: 645–681 Google Scholar
  10. Eriksson T., Hibbs M. S., Yoder A. D., Delwiche C. F. and Donoghue M. J. (2003). The phylogeny of Rosoideae (Rosaceae) based on sequences of internal transcribed spacers (ITS) of nuclear ribosomal DNA and the trnL/F region of chloroplast DNA. Int. J. Pl. Sci. 164: 197–211 CrossRefGoogle Scholar
  11. Excoffier L., Smouse P. E. and Quattro J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131: 479–491 PubMedGoogle Scholar
  12. Felsenstein J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 CrossRefGoogle Scholar
  13. Fjeldså J. and Kessler M. (1996). Conserving the biological diversity of Polylepis woodlands of the highland of Peru and Bolivia: a contribution to sustainable natural resource management in the Andes. NORDECO, Copenhagen, Denmark Google Scholar
  14. Graf K. (1986) Klima und Vegetationsgeographie der Anden – Grundzüge Südamerikas und pollenanalytische Spezialuntersuchungen Boliviens. Zürich.Google Scholar
  15. Hamrick J. L. and Nason J. D. (2000). Gene flow in forest trees. In: Young, A., Boyle, T. and Boshier, D. (eds) Forest conservation genetics: Principles and practice, pp 81–90. CSIRO Publishing, Collingwood, Australia Google Scholar
  16. Jordan E. (1983). Die Verbreitung von Polylepis-Beständen in der Westkordillere Boliviens. Tuexenia 3: 101–112 Google Scholar
  17. Kaufman S. R., Smouse P. E. and Alvarez-Buylla E. R. (1998). Pollen-mediated gene flow and differential male reproductive success in a tropical pioneer tree, Cecropia obtusifolia Bertol. (Moraceae): a paternity analysis. Heredity 81: 164–173 CrossRefGoogle Scholar
  18. Kerr M. S. (2003) A phylogenetic and biogeographic analysis of Sanguisorbeae (Rosaceae) with emphasis on the pleistocene radiation of the high Andean genus Polylepis. PhD thesis, University of Maryland.Google Scholar
  19. Kessler M. (1995a). The genus Polylepis (Rosaceae) in Bolivia. Candollea 50: 131–171 Google Scholar
  20. Kessler M. (1995b). Revalidación de Polylepis rugulosa Bitter. Gayana Bot. 52: 49–51 Google Scholar
  21. Kessler M. (1995c). Polylepis-Wälder Boliviens: Taxa, Ökologie, Verbreitung und Geschichte. Dissertationes Botanicae 246. J. Cramer, Berlin Google Scholar
  22. Kessler M. (2002). The elevational gradient of Andean plant endemism: varying influences of taxon-specific traits and topography at different taxonomic levels. J. Biogeogr. 29: 1159–1166 CrossRefGoogle Scholar
  23. Kessler M. and Schmidt-Lebuhn A. N. (2006). Taxonomical and distributional notes on Polylepis (Rosaceae). Org. Div. Evol. 6: 67–69 CrossRefGoogle Scholar
  24. Lægaard S. (1992). Influence of fire in the grass paramo vegetation of Ecuador. In: Balslev, H. and Luteyn, J. L. (eds) Paramo. An Andean ecosystem under human influence, pp. Academic Press, London Google Scholar
  25. Lindgren D., Paule L., Shen X., Yazdani R., Segerström U., Wallin J.-E. and Lejdebro M.-L. (1995). Can viable pollen carry scots pine genes over long distances. Grana 34: 64–69 CrossRefGoogle Scholar
  26. Miehe G. and Miehe S. (1994). Zur oberen Waldgrenze in tropischen Gebirgen. Phytocoenologia 24: 53–110 Google Scholar
  27. Nei M. and Li W. H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76: 5269–5273 PubMedCrossRefGoogle Scholar
  28. Robledo-Arnuncio J. J. and Gil L. (2004). Patterns of pollen dispersal in a small population of Pinus sylvestris L. revealed by total-exclusion paternity analysis. Heredity 94: 13–22 CrossRefGoogle Scholar
  29. Rogers C. A. and Levetin E. (1998). Evidence of long-distance transport of mountain cedar pollen into Tulsa, Oklahoma. Int. J. Biometry 42: 65–72 CrossRefGoogle Scholar
  30. Romoleroux K. (1996) Rosaceae. In: Harling G., Andersson L. (eds.) Flora of Ecuador 56, pp. 1–152.Google Scholar
  31. Ruiz L. H., Pavon J. A. (1794) Florae Peruvianae et Chilensis Prodromus. Madrid.Google Scholar
  32. Salgado-Labouriau M. (1979). Modern pollen deposition in the Venezuelan Andes. Grana 18: 53–59 Google Scholar
  33. Sargent R. D. (2004). Floral symmetry affects speciation rates in angiosperms. Proc. Roy. Soc. Lond. B 271: 603–608 CrossRefGoogle Scholar
  34. Schmidt-Lebuhn A. N. (2007) Revision of the genus Minthostachys (Labiate). Mem. New York Bot. Gard. (In Press).Google Scholar
  35. Schmidt-Lebuhn A. N., Kessler M. and Kumar M. (2006). Promiscuity in the Andes: species relationship in Polylepis (Rosaceae, Sanguisorbeae) based on AFLP and morphology. Syst. Bot. 31: 547–559 CrossRefGoogle Scholar
  36. Schmidt-Lebuhn A. N., Kessler M. and Müller J. (2005). Evolution of Suessenguthia (Acanthaceae) inferred from morphology, AFLP data and ITS rDNA sequences. Org. Div. Evol. 5: 1–13 CrossRefGoogle Scholar
  37. Schmidt-Lebuhn A. N., Kumar, M., Kessler, M. (2007) An assessment of the genetic population structure of two species of Polylepis (Rosaceae) in the Chilean Andes. Flora. (In press).Google Scholar
  38. Schneider S., Roessli D., Excoffier L. (2000) Arlequin ver. 2.000: A software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland.Google Scholar
  39. Schuster W. S. F. and Mitton J. B. (2000). Paternity and gene dispersal in limber pine (Pinus flexilis James). Heredity 84: 348–361 PubMedCrossRefGoogle Scholar
  40. Simpson B. B. (1979) A revision of the genus Polylepis (Rosaceae: Sanguisorbeae). Smiths. Contr. Bot. 43. 62 pp.Google Scholar
  41. Simpson B. B. (1986). Speciation and specialization of Polylepis in the Andes. In: Vuilleumier, F. and Monasterio, M. (eds) High altitude tropical biogeography, pp 304–316. Oxford University Press, Oxford Google Scholar
  42. Smouse P. E. and Sork V. L. (2004). Measuring pollen flow in forest trees: an exposition of alternative approaches. For. Ecol. Manage. 197: 21–38 CrossRefGoogle Scholar
  43. Sork V. L., Davis F. W., Smouse P. E., Apsit V. J., Dyer R. J., Fernandez-M. J. F. and Kuhn B. (2002). Pollen movement in declining populations of California Valley oak, Quercus lobata: where have all the fathers gone. Molec. Ecol. 11: 1657–1668 CrossRefGoogle Scholar
  44. Swofford D. L. (2002). PAUP*, Phylogenetic Analysis using Parsimony (*and Other Methods) version 4.0b10. Sinauer Associates, Sunderland, Masachusetts Google Scholar
  45. SYSTAT (1997) SYSTAT for Windows, statistics, version 7.0. SPSS Inc., Chicago.Google Scholar
  46. Thomson J. D., Wilson P., Valenzuela M. and Malzone M. (2000). Pollen presentation and pollination syndromes, with special reference to Penstemon. Pl. Sp. Biol. 15: 11–29 CrossRefGoogle Scholar
  47. Van de Peer Y. and de Wachter R. (1994). TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comp. Appl. Biosci. 10: 569–570 PubMedGoogle Scholar
  48. Waller G. D. (1980). Managing colonies for crop pollination. In: Maretin, E. C. (eds) Beekeeping in the United States, pp 73–77. US Department of Agriculture, Washington Google Scholar
  49. Whittle C. A. and Johnston M. O. (2003). Broad-scale analysis contradicts the theory that generation time affects molecular evolution rates in plants. J. Molec. Evol. 56: 223–233 PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.Department of Systematic Botany, Albrecht-von-Haller-Institute of Plant SciencesGeorg-August-University GöttingenGöttingenGermany
  2. 2.Institute of Geobotany and Botanical GardenMartin-Luther-University Halle-WittenbergHalleGermany

Personalised recommendations