Plant Systematics and Evolution

, Volume 266, Issue 1–2, pp 79–89 | Cite as

Evolutionary patterns and processes in the genus Rosa (Rosaceae) and their implications for host-parasite co-evolution

  • V. WissemannEmail author
  • C. M. Ritz


The genus Rosa (Rosaceae) is a remarkable genus with respect to systematic biology. Multiple reproductive strategies ranging from apomixis to outcrossing including hybridisation, as well as different modes of character inheritance like matroclinal, paternal or sex unrelated ones. This complexity makes the genus a model in which simple concepts of radiation, speciation and taxonomy come to their limits. Analyses of the evolutionary patterns and processes in Rosa give clear evidence for the stochastic character of this specific evolutionary scenario.


Rosa Rosaceae hybridisation diversification speciation radiation polyploidy genome evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alleman A. and Doctor J. (2000). Genomic imprinting in plants: observations and evolutionary implications. Pl. Molec. Biol. 43: 147–161 CrossRefGoogle Scholar
  2. Anderson E. (1948). Hybridization of the habitat. Evolution 2: 1–9 CrossRefGoogle Scholar
  3. Anderson E. (1949). Introgressive hybridization, Reprint 1968. Hafner Publishing Company, New York, London Google Scholar
  4. Anderson E. and Stebbins G. L. (1954). Hybridization as an evolutionary stimulus. Evolution 8: 378–388 CrossRefGoogle Scholar
  5. Arnold M. L. (1997). Natural hybridization and evolution. Oxford University Press, New York Oxford Google Scholar
  6. Blackburn K. and Harrison J. H. W. (1921). The status of the British rose forms as determined by their cytological behaviour. Ann. Bot. 35: 159–188 Google Scholar
  7. Blackhurst H. T. (1948). Cytogenetic studies on Rosa rubiginosa and its hybrids. Proc. Amer. Soc. Hortic. Sci. 52: 510–516 Google Scholar
  8. Camerarius R. J. (1694). Über das Geschlecht der Pflanzen (De suxu plantarum epistola). In: Möbius, M. (eds) Ostwalds Klassiker der exakten Wissenschaften, Nr. 105, pp. Verlag Wilhelm Engelmann, Leipzig Google Scholar
  9. Campbell D. R., Waser N. M. and Wolf P. G. (1998). Pollen transfer by natural hybrids and parental species in an Ipomopsis hybrid zone. Evolution 52: 1602–1611 CrossRefGoogle Scholar
  10. Christ H. (1873). Die Rosen der Schweiz. Verlag H. Georg, Basel Google Scholar
  11. Crépin F. (1869). Primitiae Monographiae Rosarum. Matériaux pour servir á l'histoire des roses (Fasc. 1). Annot-Braeckman, Gand Google Scholar
  12. Darwin C. (1859). On the origin of species by means of natural selection for the preservation of favoured races in the struggle of life. Murray, London Google Scholar
  13. Déséglise A. (1877). Catalogue Raisonné ou énumération méthodique des espéces du genre rosier pour l'Europe, l'Asie et l'Afrique spécialment les Rosiers de la France et de l'Angleterre. Librairie de Ch. Mentz, Genf Google Scholar
  14. Fagerlind F. (1940). Sind die Canina-Rosen agamospermische Bastarde. Svensk, Bot. Tidskr. 34: 334–354 Google Scholar
  15. Fagerlind F. (1944). Kompatibilität und Inkompatibilität in der Gattung Rosa. Acta Horti Berg. 13: 274–302 Google Scholar
  16. Fagerlind F. (1948). Die Bastarde der Canina-Rosen, ihre Syndese- und Formbildungsverhältnisse. Acta Horti Berg. 14: 7–37 Google Scholar
  17. Feuerhahn B. and Spethmann W. (1995). Kreuzungen bei Wildrosenarten. Gehölzforschung 3., Hannover Google Scholar
  18. Floate K. D. and Whitham T. G. (1993). The hybrid bridge hypothesis - host shifting via plant hybrid swarms. Amer. Naturalist 141: 651–662 CrossRefGoogle Scholar
  19. Gerechte Z. K., Wahl I., Vardi A. and Zohary D. (1971). Transfer of stem rust seedling resistance from wild diploid Einkorn to tetraploid durum wheat by means of a triploid hybrid bridge. Euphytica 20: 281–285 CrossRefGoogle Scholar
  20. Graham G. G. and Primavesi A. L. (1993). Roses of Great Britain and Ireland. B.S.B.I. Handbook No. 7. Botanical Society of the British Isles, London Google Scholar
  21. Gustafsson A. and Håkansson A. (1942). Meiose in some Rosa-hybrids. Bot. Not. 95: 331–343 Google Scholar
  22. Gustafsson A. (1944). The constitution of the Rosa canina complex. Hereditas 30: 405–428 CrossRefGoogle Scholar
  23. Hurst C. C. (1925). Chromosomes and characters in Rosa and their significance in the origin of species. In: Hurst, C. C. (eds) Experiments in Genetics, Vol. XLVI, pp 534–558. Cambridge University Press, Cambridge Google Scholar
  24. Jicínská D. (1976). Morphological features of F1 generation in Rosa hybrids 1. Hybrids of some species of sect. Caninae with Rosa rugosa. Folia Geobot. Phytotax. Praha 11: 301–311 Google Scholar
  25. Keller R. (1931) Synopsis Rosarum spontanearum Europae mediae. Denkschr. Schweiz. Naturf. Ges. 65.Google Scholar
  26. Kohler C., Page D. R., Gagliardini V. and Grossniklaus U. (2005). The Arabidopsis thaliana MEDEA Polycomb group protein controls expression of PHERES1 by parental imprinting. Nature Genet. 37: 28–30 PubMedGoogle Scholar
  27. Kroon G. H. and Zeilinga E. A. (1974). Apomixis and heterogamy in rose rootstocks (Rosa canina L.). Euphytica 23: 345–352 CrossRefGoogle Scholar
  28. Linneaus C. (1751) Plantae hybridae [J. Haartman]. AmoenitatesAcademicae 3 (1756): 28–62. Holmiae.Google Scholar
  29. Linnaeus C. (1753) Species Plantarum, Tomus 1, Holmiae.Google Scholar
  30. Ma Y., Islam-Faridi N., Crane C. F., Stelly D. M., Price H. J. and Byrne D. H. (1996). A new procedure to prepare slides of metaphase chromosomes of roses. Hortscience 31: 855–856 Google Scholar
  31. Ma Y. and Crane C. F. (1997). Karyotypic relationships among some Rosa species. Caryologia 50: 317–326 Google Scholar
  32. Ma Y., IslamFaridi M. N., Crane C. F., Ji Y., Stelly D. M., Price H. J. and Byrne D. H. (1997). In situ hybridization of ribosomal DNA to rose chromosomes. J. Heredity 88: 158–161 Google Scholar
  33. Matsumoto S., Wakita H. and Fukui H. (1997). Molecular classification of wild roses using organelle DNA probes. Sci. Hort. 68: 191–196 CrossRefGoogle Scholar
  34. Matsumoto S., Kouchi M., Yabuki J., Kusunoki M., Ueda Y. and Fukui H. (1998). Phylogenetic analyses of the genus Rosa using the matK sequence: molecular evidence for the narrow genetic background of modern roses. Sci. Hort. 77: 73–82 CrossRefGoogle Scholar
  35. Matsumoto S., Kouchi M. and Fukui H. (2000). Phylogenetic analyses of the subgenus Eurosa using the ITS nrDNA sequence. Acta Hort. 521: 193–202 Google Scholar
  36. Nybom H., Esselink G. D., Werlemark G. and Vosman B. (2004). Microsatellite DNA marker inheritance indicates preferential pairing between two highly homologous genomes in polyploid and hemisexual dog-roses, Rosa L. sect. Caninae DC. Heredity 92: 139–150 PubMedCrossRefGoogle Scholar
  37. Nybom H., Esselink G. D., Werlemark G., Leus L. and Vosman B. (2005). Unique genomic configuration revealed by microsatellite DNA in polyploid dogroses, Rosa sect. Caninae. J. Evol. Biol. 19(2): 635–648 CrossRefGoogle Scholar
  38. Reichert H. (1998a). Beobachtungen und Versuche zur Fortpflanzung der Apfelrose, Rosa villosa L. (R. pomifera J.Herrmann). Abh. Delattinia 24: 159–166 Google Scholar
  39. Reichert H. (1998b). Die zwei Wuchstypen bei Rosen der Sektion Caninae und ein Vorschlag für eine Kurzbezeichnung derselben. Acta Rhodologica 1: 29–35 Google Scholar
  40. Rieseberg L. H. and Ellstrand N. C. (1993). What can molecular and morphological markers tell us about plant hybridization. Crit. Rev. Pl. Sci. 12: 213–241 CrossRefGoogle Scholar
  41. Ritz C. M. and Wissemann V. (2003). Male correlated non-matroclinal character inheritance in reciprocal hybrids of Rosa section Caninae (DC) Ser. (Rosaceae). Pl. Syst. Evol. 241: 213–221 CrossRefGoogle Scholar
  42. Ritz C. M., Maier W. F. A., Oberwinkler F. and Wissemann V. (2005b). Different evolutionary histories of two Phragmidium species infecting the same dogrose hosts. Mycol. Res. 109: 603–609 CrossRefGoogle Scholar
  43. Ritz C. M., Schmuths H. and Wissemann V. (2005a). Evolution by reticulation: European dogroses originated by multiple hybridization across the genus Rosa. J. Heredity. 96: 4–14 CrossRefGoogle Scholar
  44. Starr J., Bruneau A. (2002). 1. ASPT Colloquium: Rosaceae phylogeny: current knowledge, problems and prospects,
  45. Stebbins G. L. (1951). Variation and evolution in plants. Columbia Biological Series XVI. Columbia University Press, New York Google Scholar
  46. Täckholm G. (1920). On the cytology of the genus Rosa. A preliminary note. Svensk Bot. Tidskr. 14: 300–311 Google Scholar
  47. Täckholm G. (1922). Zytologische Studien über die Gattung Rosa. Acta Horti Berg. 7: 97–381 Google Scholar
  48. Werlemark G., Uggla M. and Nybom H. (1999). Morphological and RAPD markers show a highly skewed distribution in a pair of reciprocal crosses between hemisexual dogrose species, Rosa sect. Caninae. Theor. Appl. Genet. 98: 557–563 CrossRefGoogle Scholar
  49. Werlemark G. (2000). Evidence of apomixis in hemisexual dogroses, Rosa section Caninae. Sex. Plant Reprod. 12: 353–359 CrossRefGoogle Scholar
  50. Werlemark G., Nybom H., Olsson A. and Uggla M. (2000). Variation and inheritance in hemisexual dogroses, Rosa section Caninae. Biotechnol. & Biotechnol. Eq. 14: 28–31 Google Scholar
  51. Werlemark G. and Nybom H. (2001). Skewed distribution of morphological character scores and molecular markers in three interspecific crosses in Rosa section Caninae. Hereditas 134: 1–13 PubMedCrossRefGoogle Scholar
  52. Wissemann V. and Hellwig F. H. (1997). Reproduction and hybridisation in the genus Rosa section Caninae (Ser.) Rehd. Bot. Acta 110: 251–256 Google Scholar
  53. Wissemann V. (1999). Genetic constitution of Rosa sect. Caninae (R. canina, R. jundzilli) and sect. Gallicanae (R. gallica). J. Appl. Bot. 73: 191–196 Google Scholar
  54. Wissemann V. (2000). Molekulargenetische und morphologisch-anatomische Untersuchungen zur Evolution und Genomzusammensetzung von Wildrosen der Sektion Caninae (DC.) Ser. Bot. Jahrb. Syst. 122: 357–429 Google Scholar
  55. Wissemann V. (2002). Molecular evidence for allopolyploid origin in the Rosa canina-complex (Rosaceae, Rosoideae). J. Appl. Bot. 76: 176–178 Google Scholar
  56. Wissemann V. (2003). Conventional taxonomy of wild roses. In: Roberts, A., Debener, T. and Gudin, S. (eds) Encyclopedia of Rose Science, pp 111–117. Academic Press, London Google Scholar
  57. Wissemann V. and Ritz C. M. (2005). The genus Rosa (Rosoideae, Rosaceae) revisited: molecular analysis of nrITS-1 and atpB-rbcL intergenic spacer (IGS) versus conventional taxonomy. Bot. J. Linn. Soc. 147: 275–290 CrossRefGoogle Scholar
  58. Wissemann V., Gallenmueller F., Ritz C. M., Steinbrecher T. and Speck T. (2006). Inheritance of growth form and mechanical characters in reciprocal polyploid hybrids of Rosa section Caninae - implications for the ecological niche differentiation and radiation process of hybrid offspring. Trees-Struct. Funct. 20: 340–347 Google Scholar
  59. Wissemann V., Riedel M. and Riederer M. (2007). Matroclinal inheritance of cuticular waxes in reciprocal hybrids of Rosa species, sect. Caninae (Rosaceae). Pl. Syst. Evol. 263: 181–190 CrossRefGoogle Scholar
  60. Wu S., Ueda Y., Nishihara S. and Matsumoto S. (2001). Phylogenetic analysis of Japanese Rosa species using DNA sequences of nuclear ribosomal internal transcribed spacers (ITS). J. Hortic. Sci. Biotechnol. 76: 127–132 Google Scholar
  61. Wulff H. D. (1954). Über das spontane Auftreten einer Canina-Meiosis bei der Mikrosporogenese der diploiden Rosa ruga Lindl. Österr. Bot. Z. 101: 539–557 CrossRefGoogle Scholar
  62. Zielinski J. (1985). Studia nad rodzajem Rosa L. Systematyka sekcji Caninae DC. em Christ. Arboretum Kórnickie Rocznik 30: 3–109 Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.Dept. of Systematic BotanyJustus-Liebig-UniversityGiessenGermany
  2. 2.Institute of Systematic Botany with Botanical Garden and Herbarium HaussknechtFriedrich-Schiller-University JenaJenaGermany

Personalised recommendations