Plant Systematics and Evolution

, Volume 267, Issue 1–4, pp 25–35 | Cite as

Phylogeny of Carpinus and subfamily Coryloideae (Betulaceae) based on chloroplast and nuclear ribosomal sequence data

  • K.-O. Yoo
  • J. Wen


Phylogenetic studies were conducted for Carpinus and the subfamily Coryloideae (Betulaceae) using sequences of the chloroplast matK gene, the trnL-trnF region (trnL intron, and trnL [UAA] 3' exon-trnF [GAA] intergenic spacer) and the psbA-trnH intergenic spacer, and the nuclear ribosomal ITS regions. The combined analyses of the three chloroplast regions suggest that Coryloideae is monophyletic; Ostryopsis is sister to the Carpinus - Ostrya clade; Corylus is monophyletic and sister to the Ostrya - Carpinus - Ostryopsis clade; Ostrya is paraphyletic; and within Carpinus, species of sect. Carpinus from eastern Asia form a monophyletic group, whereas the positions of C. betulus from Europe and C. caroliniana from eastern North America are unresolved within the Carpinus clade. The cpDNA tree generated in this study is largely congruent with the previously published ITS results, but the ITS tree places Carpinus sect. Distegocarpus as sister to the Ostrya - Carpinus sect. Carpinus clade. Future work is needed to examine the relationships within the Ostrya - Carpinus clade, evaluate the generic status of Ostrya, and test the phylogenetic position of Ostryopsis.


Betulaceae Carpinus Coryloideae chloroplast DNA nrDNA phylogeny 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbe E. C. (1974). Flowers and inflorescences of the Amentiferae. Bot. Rev. 40: 159–261 Google Scholar
  2. Bousquet J., Strauss S. H. and Li P. (1992). Complete congruence between morphological and rbc L-based molecular phylogenies in Birches and related species (Betulaceae). Molec. Biol. Evol. 9: 1076–1088 PubMedGoogle Scholar
  3. Chen Z.-D. (1994) Phylogeny and phytogeography of the Betulaceae. Acta Phytotax. Sin. 32: 1–31, 101–153.Google Scholar
  4. Chen Z.-D., Manchester S. R. and Sun H. Y. (1999). Phylogeny and evolution of the Betulaceae as inferred from DNA sequences, morphology, and paleobotany. Amer. J. Bot. 86: 1168–1181 CrossRefGoogle Scholar
  5. Chen Z.-D. and Zhang Z.-Y. (1991). A study on foliar epidermis in Betulaceae. Acta Phytotax. Sin. 29: 156–163 Google Scholar
  6. Crane P. R. (1989). Early fossil history and evolution of the Betulaceae. In: Crane, P. R. and Blackmore, S. (eds) Evolution, systematics and fossil history of the Hamamelidae, vol. 2. Systematics Association Special Volume 40B, pp 87–116. Clarendon Press, Oxford Google Scholar
  7. Cronquist A. (1981). An integrated system of classification of flowering plants. Columbia University Press, London Google Scholar
  8. Dahlgren R. (1983). General aspects of angiosperm evolution and macrosystematics. Nord. J. Bot. 3: 119–149 Google Scholar
  9. Doyle J. J. and Doyle J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11–15 Google Scholar
  10. Farris J. S., Källersjö M., Kluge A. G. and Bult C. (1995). Testing significance of incongruence. Cladistics 10: 315–319 CrossRefGoogle Scholar
  11. Forest F. and Bruneau A. (2000). Phylogenetic analysis, organization and molecular evolution of the nontranscribed spacer of 5S ribosomal RNA genes in Corylus (Betulaceae). Int. J. Pl. Sci. 161: 793–806 CrossRefGoogle Scholar
  12. Forest F., Savolainen V., Chase M. W., Lupia R., Bruneau A. and Crane P. R. (2005). Teasing apart molecular- versus fossil-based error estimates when dating phylogenetic trees: A case study in the Birch family (Betulaceae). Syst. Bot. 30: 118–133 CrossRefGoogle Scholar
  13. Hall J. W. (1952). The comparative anatomy and phylogeny of the Betulaceae. Bot. Gaz. 113: 235–270 CrossRefGoogle Scholar
  14. Hamilton M. B. (1999). Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Molec. Ecol. 8: 521–522 Google Scholar
  15. Heywood V. H. (1993). Flowering plants of the world. BT Batsford Ltd, London Google Scholar
  16. Hjelmqvist H. (1948). Studies on the floral morphology and phylogeny of Amentiferae. Bot. Not., Suppl. 2: 1–171 Google Scholar
  17. Hoar C. S. (1916). The anatomy and phylogenetic position of the Betulaceae. Amer. J. Bot. 3: 415–435 CrossRefGoogle Scholar
  18. Hu H. H. (1964). The materials on the monography of genus Carpinus L. of China. Acta Phytotax. Sin. 9: 281–298 Google Scholar
  19. Huelsenbeck J. P. and Ronquist F. (2001). MrBayes. Bayesian inference of phylogeny. Bioinformatics 17: 754–755 PubMedCrossRefGoogle Scholar
  20. Hutchinson J. (1926). Families of flowering plants, Dicotyledons, 1st ed. Macmillan, London Google Scholar
  21. Hutchinson J. (1967). The genera of flowering plants, vol. 2. Clarendon Press, Oxford Google Scholar
  22. Johnson L. A. and Soltis D. E. (1994). MatK DNA sequences and phylogenetic reconstruction in Saxifragaceae s. str. Syst. Biol. 19: 143–156 Google Scholar
  23. Kato H., Oginuma K., Gu Z., Hammel B. and Tobe H. (1998). Phylogenetic relationships of Betulaceae based on matK sequences with particular reference to the position of Ostryopsis. Acta Phytotax. Geobot. 49: 89–97 Google Scholar
  24. Kuprianova L. A. (1963). On a hitherto undescribed family belonging to the Amentiferae. Taxon 12: 12–13 CrossRefGoogle Scholar
  25. Li P. C. and Cheng S. X. (1979). Betulaceae. In: Kuang, K. Z. and Lee, P. C. (eds) Flora Reipublicae Popularis Sinicae, vol. 21, pp 44–137. Science Press, Beijing Google Scholar
  26. Li P. C., Skvortsov A. K. (1999) Betulaceae. In: Wu C.-Y., Raven P. H. (eds.) Flora of China, vol. 4. Science Press, Beijing, and Missouri Botanical Garden Press, Missouri, pp. 284–313.Google Scholar
  27. Mabberley D. J. (1997). The plant book. 2nd ed. Cambridge University Press, Cambridge Google Scholar
  28. Manchester S. R. and Chen Z.-D. (1998). A new genus of Coryloideae (Betulaceae) from the Paleocene of North America. Int. J. Pl. Sci. 159: 522–532 CrossRefGoogle Scholar
  29. Manchester S. R. and Crane P. R. (1987). A new genus of Betulaceae from the Oligocene of western North America. Bot. Gaz. 148: 263–273 CrossRefGoogle Scholar
  30. Mau B. and Newton M. (1999). Bayesian phylogenetic inference via Markov chain Monte Carlo methods. Biometrics 55: 1–12 PubMedCrossRefGoogle Scholar
  31. Metcalfe C. R. and Chalk L. (1950). Anatomy of the dicotyledons, vol. 2. Clarendon Press, Oxford Google Scholar
  32. Nakai T. (1915). Flora Sylvatica Koreana, vol. 2. Chosen Government Press, Seoul Google Scholar
  33. Pigg K. B., Manchester S. R. and Wehr W. C. (2003). Corylus, Carpinus, and Palaeocarpinus (Betulaceae) from the middle Eocene Klondike Mountain and Allenby Formations of northwestern North America. Int. J. Pl. Sci. 164: 807–822 CrossRefGoogle Scholar
  34. Posada D. and Crandall K. A. (1998). MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817–818 PubMedCrossRefGoogle Scholar
  35. Prantl K. (1894). Betulaceae. In: Engler, A. and Prantl, K. (eds) Die natürlichen Pflanzenfamilien, vol. 3, pp 38–46. Engelmann, Leipzig Google Scholar
  36. Rannala B. and Yang Z. H. (1996). Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J. Molec. Evol. 43: 304–311 PubMedGoogle Scholar
  37. Rehder A. (1960). Manual of cultivated trees and shrubs hardy in North America. 2nd ed. The Macmillan Company, New York Google Scholar
  38. Shimodaira H. and Hasegawa M. (1999). Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molec. Biol. Evol. 16: 1114–1116 Google Scholar
  39. Siebold P. F., de, Zuccarini J. G. (1846) Florae Japonicae familae naturales: adjectis generum et specierum exemplis selectis. Abhandlungen der mathematisch-physikalischen Classe der Königlich Bayerischen Akademie der Wissenschaften, Bd. 4, Abt. 2, 3.Google Scholar
  40. Swofford D. L. (2003). PAUP*. Phylogenetic analysis using parsimony (*and other methods) Version 4.0 b10. Sinauer Associates, Sunderland, Massachusetts Google Scholar
  41. Swofford D. L., Olsen G. J., Waddell P. J. and Hillis D. M. (1996). Phylogenetic inference. In: Hillis, D. M., Moritz, C., and Mable, B. K. (eds) Molecular systematics. 2nd ed. pp 407–514. Sinauer Associates, Sunderland, Massachusetts Google Scholar
  42. Taberlet P., Gielly L., Pautou G. and Bouvet J. (1991). Universal primers for amplification of three non-coding regions of chloroplast DNA. Pl. Molec. Biol. 17: 1105–1109 CrossRefGoogle Scholar
  43. Takhtajan A. (1997). Diversity and classification of flowering plants. Columbia University Press, New York Google Scholar
  44. Templeton A. R. (1983). Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the humans and apes. Evolution 37: 221–244 CrossRefGoogle Scholar
  45. Thorne R. F. (1992). Classification and geography of the flowering plants. Bot. Rev. 58: 226–257 CrossRefGoogle Scholar
  46. Whitcher I. N. and Wen J. (2001). Phylogeny and biogeography of Corylus (Betulaceae): inference from ITS sequences. Syst. Bot. 26: 283–298 Google Scholar
  47. Winkler H. (1904). Betulaceae. In: Engler, A. and Prantl, K. (eds) Die Natürlichen Pflanzenfamilien, 19 (IV, 61), pp 1–149. Engelmann, Leipzig Google Scholar
  48. Yoo K.-O. and Wen J. (2002). Phylogeny and biogeography of Carpinus and subfamily Coryloideae (Betulaceae). Int. J. Pl. Sci. 163: 641–650 CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.Division of Life SciencesKangwon National UniversityChuncheonKorea
  2. 2.Department of BotanyNational Museum of Natural History, MRC 166, Smithsonian InstitutionWashington DCUSA
  3. 3.Laboratory of Systematic and Evolutionary Botany, Institute of BotanyChinese Academy of SciencesBeijingP. R. China

Personalised recommendations