Advertisement

Plant Systematics and Evolution

, Volume 264, Issue 3–4, pp 251–264 | Cite as

Extensive length variation in the cpDNA trnT-trnF region of hemiparasitic Pedicularis and its phylogenetic implications

  • F.-S. Yang
  • X.-Q. WangEmail author
Article

Abstract

The cpDNA trnT-trnF region, a molecular marker widely used in the phylogenetic reconstruction at lower taxonomic levels, is relatively conserved in size and structure. In this region single length variation over 100 bp is much less common than small deletion for congeneric species of angiosperms. Here we examined evolutionary patterns of the trnT-trnF region in 43 species of Pedicularis, a species-rich genus with adaptive radiation. Four independent large deletions, varying from 203 to 297 bp in length, were detected from nine species of the genus, which might result from slipped-strand mispairing. These deletions occurred in different locations of the cpDNA region and in different clades of the phylogenetic tree, indicating that the deletion of large cpDNA fragments may be very frequent in the hemiparasitic lineage of the family Orobanchaceae. Parsimony analyses showed that section Cyathophora of Pedicularis, endemic to the Sino-Himalayan region, was a strongly supported monophyletic group. This section could have a recent origin followed by rapid radiation, considering that it is characterized by a large deletion in the trnT-trnF region and a relatively low interspecific sequence divergence.

Keywords

Sect. Cyathophora Pedicularis trnT-trnnrDNA ITS cpDNA deletion Sino-Himalaya 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albertini, A. M., Hofer, M., Calos, M. P., Miller, J. H. 1982On the formation of spontaneous deletions: the importance of short sequence homologies in the generation of large deletionsCell29319328PubMedCrossRefGoogle Scholar
  2. Applequist, W. L., Wallace, R. S. 2002Deletions in the plastid trnT-trnF intergenic spacer define clades within Cactaceae subfamily CactoideaePl. Syst. Evol.231153162CrossRefGoogle Scholar
  3. Bakker, F. T., Culham, A., Gomez-Martinez, R., Carvalho, J., Compton, J., Dawtrey, R., Gibby, M. 2000Patterns of nucleotide substitution in angiosperm cpDNA trnL (UAA)-trnF (GAA) regionsMolec. Biol. Evol.1711461155PubMedGoogle Scholar
  4. Baldwin, B. G. 1997Adaptive radiation of the Hawaiian silversword alliance: Congruence and conflict of phylogenetic evidence from molecular and non-molecular investigationsGivnish, T. J.Sytsma, K. J. eds. Molecular evolution and adaptive radiationCambridge University PressNew York103128Google Scholar
  5. Baldwin, B. G., Sanderson, M. J. 1998Age and rate of diversification of the Hawaiian silversword alliance (Compositae)Proc. Natl. Acad. Sci. (USA)9594029406CrossRefGoogle Scholar
  6. Bayer, R. J., Starr, J. R. 1998Tribal phylogeny of the Asteraceae based on two non-coding chloroplast sequences, the trnL intron and trnL/trnF intergenic spacerAnn. Missouri Bot. Gard.85242256CrossRefGoogle Scholar
  7. Böhle, U. R., Hilger, H. H., Martin, W. F. 1996Island colonization and evolution of the insular woody habit in Echium L. (Boraginaceae)Proc. Natl. Acad. Sci. (USA)931174011745CrossRefGoogle Scholar
  8. Clegg, M. T., Gaut, B. S., Learn, G. H., Morton, B. R. 1994Rates and patterns of chloroplast DNA evolutionProc. Natl. Acad. Sci. (USA)9167956801CrossRefGoogle Scholar
  9. Curtis, S., Clegg, M. T. 1984Molecular evolution of chloroplast DNA sequencesMolec. Biol. Evol.1291301PubMedGoogle Scholar
  10. dePamphilis, C. W. 1995Genes and genomesPress, M. C.Graves, J. D. eds. Parasitic PlantsChapman and HallLondon176205Google Scholar
  11. dePamphilis, C. W., Palmer, J. D. 1990Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plantNature348337339PubMedCrossRefGoogle Scholar
  12. dePamphilis, C. W., Young, N. D., Wolfe, A. D. 1997Evolution of plastid gene rps2 in a lineage of hemiparasitic and holoparasitic plants: many losses of photosynthesis and complex patterns of rate variationProc. Natl. Acad. Sci. (USA)9473677372CrossRefGoogle Scholar
  13. Downie, S. R., Olmstead, R. G., Zurawski, G., Soltis, D. E., Soltis, P. S., Watson, L. C., Palmer, J. D. 1991Six independent losses of the chloroplast DNA rpl2 intron in dicotyledons: molecular and phylogenetic implicationsEvolution4512451259CrossRefGoogle Scholar
  14. Drábková, L., Kirschner, J., Vlèek, È., Paèes, V. 2004 TrnL-trnF intergenic spacer and trnL intron define clades within Luzula and Juncus (Juncaceae)J. Molec. Evol.59110PubMedCrossRefGoogle Scholar
  15. Farris, J. S., Källersjö, M., Kluge, A. G., Bult, C. 1994Testing significance of incongruenceCladistics10315319CrossRefGoogle Scholar
  16. Freyer, R., Neckermann, K., Maier, R. M., Kössel, H. 1995Structural and functional analysis of plastid genomes from parasitic plants: loss of an intron within the genus Cuscuta Curr. Genet.27580586PubMedCrossRefGoogle Scholar
  17. Gemmill, C. E. C., Allan, G. J., Wagner, W. L., Zimmer, E. A. 2002Evolution of insular pacific Pittosporum (Pittosporaceae): Origin of the Hawaiian radiationMolec. Phylogenet. Evol.223142PubMedCrossRefGoogle Scholar
  18. Goldblatt, P., Savolainen, V., Porteous, O., Sostaric, I., Powell, M., Reeves, G., Manning, J. C., Barraclough, T. G., Chase, M. W. 2002Radiation in the Cape flora and the phylogeny of peacock irises Moraea (Iridaceae) based on four plastid DNA regionsMolec. Phylogenet. Evol.44341360CrossRefGoogle Scholar
  19. Goremykin, V. V., Hirsch-Ernst, K. I., Wölfl, S., Hellwig, F. H. 2004The chloroplast genome of Nymphaea alba: whole-genome analyses and the problem of identifying the most basal angiospermMolec. Biol. Evol.2114451454PubMedCrossRefGoogle Scholar
  20. Graham, S. W., Reeves, P. A., Burns, A. C. E., Olmstead, R. G. 2000Microstructural changes in noncoding chloroplast DNA: interpretation, evolution, and utility of indels and inversions in basal angiosperm phylogenetic inferenceInt. J. Pl. Sci.161S83S96CrossRefGoogle Scholar
  21. Kelchner, S. A. 2000The evolution of non-coding chloroplast DNA and its application in plant systematicsAnn. Missouri Bot. Gard.87482498CrossRefGoogle Scholar
  22. Kimura, M. 1980A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequencesJ. Molec. Evol.16111120PubMedCrossRefGoogle Scholar
  23. Kumar, S., Tamura, K., Nei, M. 2004MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignmentBrief. Bioinform.5150163PubMedCrossRefGoogle Scholar
  24. Levinson, G., Gutman, G. A. 1987Slipped-strand mispairing: a major mechanism for DNA sequence evolutionMolec. Biol. Evol.4203221PubMedGoogle Scholar
  25. Li, H. L. 1948A revision of the genus Pedicularis in China IProc. Acad. Natl. Sci. Philad.100205378Google Scholar
  26. Liu, J. Q., Gao, T. G., Chen, Z. D., Lu, A. M. 2002Molecular phylogeny and biogeography of the Qinghai-Tibet Plateau endemic Nannoglottis (Asteraceae)Molec. Phylogenet. Evol.23307325PubMedCrossRefGoogle Scholar
  27. Lohan, A. J., Wolfe, K. H. 1998A subset of conserved tRNA genes in plastid DNA of nongreen plantsGenetics150425433PubMedGoogle Scholar
  28. Mailer, R. M., Neckermann, K., Igloi, G. L., Kossel, H. 1995Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editingJ. Molec. Biol.251614628CrossRefGoogle Scholar
  29. Mansion, G., Struwe, L. 2004Generic delimitation and phylogenetic relationships within the subtribe Chironiinae (Chironieae: Gentianaceae), with special reference to Centaurium: evidence from nrDNA and cpDNA sequencesMolec. Phylogenet. Evol.32951977PubMedCrossRefGoogle Scholar
  30. Mes, T. H. M., Hart, H. 'T 1994 Sedum surculosum and S. jaccardianum (Crassulaceae) share a unique 70 bp deletion in the chloroplast DNA trnL (UAA) - trnF (GAA) intergenic spacerPl. Syst. Evol.193213221CrossRefGoogle Scholar
  31. Mitchell, A. D., Heenan, P. B. 2002 Sophora sect. Edwardsia (Fabaceae): further evidence from nrDNA sequence data of a recent and rapid radiation around the Southern OceansBot. J. Linn. Soc.140435441CrossRefGoogle Scholar
  32. Olmstead, R. G., dePamphilis, C. W., Wolfe, A. D., Young, N. D., Elisens, W. J., Reeves, P. J. 2001Disintegration of the ScrophulariaceaeAmer. J. Bot.88348361CrossRefGoogle Scholar
  33. Olmstead, R. G., Reeves, P. A. 1995Evidence for the polyphyly of the Scrophulariaceae based on chloroplast rbcL and ndhF sequencesAnn. Missouri Bot. Gard.82176193CrossRefGoogle Scholar
  34. Palmer, J. D. 1991Plastid chromosomes: structure and evolutionBogorad, L.Vasil, I. K. eds. Cell culture and somatic cell genetics of plants Vol. 7AAcademic PressNew York553Google Scholar
  35. Peng, Z., Ho, S. Y. W., Zhang, Y., He, S. 2006Uplift of the Tibetan Plateau: Evidence from divergence times of glyptosternoid catfishes Molec. Phylogenet. Evol.39568572PubMedCrossRefGoogle Scholar
  36. Qu, Y. H., Ericson, P. G. P., Lei, F. M., Li, S. H. 2005Postglacial colonization of the Tibetan Plateau inferred from the matrilineal genetic structure of the endemic red-necked snow finch, Phrgilauda ruficollis Molec. Ecol.1417671781CrossRefGoogle Scholar
  37. Quandt D., Müller K., Stech M., Hilu K. W., Frey W., Frahm J. P., Borsch T. (2004) Molecular evolution of the chloroplast trnL-F region in land plants. Monographs in Systematic Botany from the Missouri Botanical Garden: 13–37.Google Scholar
  38. Raubeson, L. A., Jansen, R. K. 1992Chloroplast DNA evidence on the ancient evolutionary split in vascular land plantsScience25516971699CrossRefGoogle Scholar
  39. Ree, R. H. 2005Phylogeny and the evolution of floral diversity in Pedicularis (Orobanchaceae)Int. J. Pl. Sci.166595613CrossRefGoogle Scholar
  40. Richardson, J. E., Pennington, R. T., Pennington, T. D., Hollingsworth, P. M. 2001Rapid diversification of a species-rich genus of neotropical rain forest treesScience29322422245PubMedCrossRefGoogle Scholar
  41. Rogers, S. O., Bendich, A. J. 1988Extraction of DNA from plant tissuesPl. Molec. Biol. ManualA6110Google Scholar
  42. Samuel, R., Stuessy, T. F., Tremetsberger, K., Baeza, C. M., Siljak-Yakovlev, S. 2003Phylogenetic relationships among species of Hypochaeris (Asteraceae, Cichorieae) based on ITS, plastid trnL intron, trnL-F spacer, and matK sequencesAmer. J. Bot.90496507Google Scholar
  43. Shaw, J., Lickey, E. B., Beck, J. T., Farmer, S. B., Liu, W., Miller, J., Siripun, K. C., Winder, C. T., Schilling, E. E., Small, R. L. 2005The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysisAmer. J. Bot.92142166Google Scholar
  44. Stefanovic, S., Krueger, L. E., Olmstead, R. G. 2002Monophyly of the Convolvulaceae and circumscription of their major lineages based on DNA sequences of multiple chloroplast lociAmer. J. Bot.8915101522Google Scholar
  45. Stefanovic, S., Olmstead, R. G. 2005Down the slippery slope: chloroplast genome evolution in ConvolvulaceaeJ. Molec. Evol.61292305PubMedCrossRefGoogle Scholar
  46. Shepherd, K. A., Waycott, M., Calladine, A. H. 2004Radiation of the Australian Salicornioideae (Chenopodiaceae) -based on evidence from nuclear and chloroplast DNA sequencesAmer. J. Bot.9113871397Google Scholar
  47. Steinmetz, A. A., Krebbers, E. T., Schwarz, Z., Gubbins, E. J., Bogorad, L. 1983Nucleotide sequences of five maize chloroplast transfer RNA genes and their flanking regionsJ. Biol. Chem.25855035511PubMedGoogle Scholar
  48. Strauss, S. H., Palmer, J. D., Howe, G. T., Doeksen, A. H. 1988Chloroplast genomes of two conifers lack a large inverted repeat and are extensively rearrangedProc. Natl. Acad. Sci. (USA)8538983902CrossRefGoogle Scholar
  49. Swofford, D. L. 2002PAUP: phylogenetic analysis using parsimony (*and other methods), version 4.0b10Sinauer AssociatesSunderlandGoogle Scholar
  50. Taberlet, P., Gielly, L., Pautou, G., Bouvet, J. 1991Universal primers for amplification of three non-coding regions of chloroplast DNAPl. Molec. Biol.1711051109CrossRefGoogle Scholar
  51. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., Higgins, D. G. 1997CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis toolsNucl. Acids Res.2548764882PubMedCrossRefGoogle Scholar
  52. Tsoong, P. C. 1955A new system for the genus Pedicularis Acta Phytotax. Sin.471147Google Scholar
  53. Tsoong, P. C. 1963Scrophulariaceae (Para II)Chien, S. S.Chun, W. Y. eds. Fl. Reip. Pop. Sin. (68)Science PressBeijing1378Google Scholar
  54. Bank, M., Fay, M. F., Chase, M. W. 2002Molecular phylogenetics of Thymelaeaceae with particular reference to African and Australian generaTaxon51329339CrossRefGoogle Scholar
  55. Wang, A. L., Yang, M. H., Liu, J. Q. 2005Molecular phylogeny, recent radiation and evolution of gross morphology of the Rhubarb genus Rheum (Polygonaceae) inferred from chloroplast DNA trnL-F sequencesAnn. Bot.96489498PubMedCrossRefGoogle Scholar
  56. Wang, Y. J, Li, X. J., Hao, G., Liu, J. Q. 2004Molecular phylogeny and biogeography of Androsace (Primulaceae) and the convergent evolution of the cushion morphologyActa Phytotax. Sin.42481499Google Scholar
  57. Wilson, E. O. 1992The diversity of LifeBelknap Press of Harvard University PressCambridgeGoogle Scholar
  58. Wu, Z. Y. 1988Hengduan mountain flora and her significanceJ. Jap. Bot.631311Google Scholar
  59. Yang, F. S., Wang, X. Q., Hong, D. Y. 2003Unexpected high divergence in nrDNA ITS and extensive parallelism in floral morphology of Pedicularis (Orobanchaceae)Pl. Syst. Evol.24091105CrossRefGoogle Scholar
  60. Yang, H., Holmgren, N. H., Mill, R. R. 1998Pedicularis LWu, Z. Y.Raven, P. H. eds. Flora of China (18)Science PressBeijing97209Google Scholar

Copyright information

© Springer-Verlag Wien 2007

Authors and Affiliations

  1. 1.State Key Laboratory of Systematic and Evolutionary Botany, Institute of BotanyChinese Academy of SciencesBeijingChina

Personalised recommendations