Plant Systematics and Evolution

, Volume 262, Issue 1–2, pp 75–87 | Cite as

Development of PCR-based chloroplast DNA markers that characterize domesticated cowpea (Vigna unguiculata ssp. unguiculata var. unguiculata) and highlight its crop-weed complex

Article

Abstract

In 1992, Vaillancourt and Weeden discovered a very important mutation for studying cowpea evolution and domestication. A loss of a BamHI restriction site in chloroplast DNA characterized all domesticated accessions and a few wild (Vigna unguiculata ssp. unguiculata var. spontanea) accessions. In order to screen a larger number of accessions, primers were designed to check this mutation using PCR RFLP or direct PCR methods. Using these new primers, 54 domesticated cowpea accessions and 130 accessions from the wild progenitor were screened. The absence of haplotype 0 was confirmed within domesticated accessions, including primitive landraces from cultivar-groups Biflora and Textilis, suggesting that this mutation occurred prior to domestication. However, 40 var. spontanea accessions distributed from Senegal to Tanzania and South Africa showed haplotype 1. Whereas this marker could not be used to identify a precise center of origin, it did highlight the widely distributed cowpea crop-weed complex. Its very high frequency in West Africa could be interpreted as a result of either genetic swamping of the wild/weedy gene pool by the domesticated cowpea gene pool or as the result of domestication by ethnic groups focusing primarily on cowpea as fodder.

Keywords

cowpea Vigna unguiculata chloroplast DNA long-range PCR gene flow crop-weedy-wild complex 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arias, D. M., Rieseberg, L. H. 1994Gene flow between cultivated and wild sunflowersTheor. Appl. Genet.89-6655660Google Scholar
  2. Ba, F. S., Pasquet, R. S., Gepts, P. 2004Genetic diversity in cowpea [Vigna unguiculata (L.) Walp.] as revealed by RAPD markersGenet. Resour. Crop Evol.51-5539550CrossRefGoogle Scholar
  3. Beebe, S., Toro, O. C., Gonzalez, A. V., Chacon, M. I., Debouck, D. G. 1997Wild-weed–crop complexes of common bean (Phaseolus vulgaris L. Fabaceae) in the Andes of Peru and Colombia, and their implications for conservation and breedingGenet. Resour. Crop Evol.447391CrossRefGoogle Scholar
  4. Corriveau, J. L., Coleman, A. W. 1988Rapid screening method to detect biparental inheritance of plastid DNA and results for over 200 angiosperm speciesAmer. J. Bot.75-1014431458CrossRefGoogle Scholar
  5. Coulibaly, S., Pasquet, R. S., Papa, R., Gepts, P. 2002AFLP analysis of the phenetic organization and genetic diversity of Vigna unguiculata L. Walp. reveals extensive gene flow between wild and domesticated typesTheor. Appl. Genet104358366PubMedCrossRefGoogle Scholar
  6. Doyle, J. J., Doyle, J. L. 1987A rapid DNA isolation procedure for small quantities of fresh leaf tissuePhytochem. Bull.191115Google Scholar
  7. Drenkard, E., Richter, B. G., Rozen, S.,  et al. 2000A simple procedure for the analysis of single nucleotide polymorphisms facilitates map-based cloning in ArabidopsisPl. Physiol.12414831492CrossRefGoogle Scholar
  8. Echikh N. (2000) Organisation du pool génique de formes sauvages et cultivées d'une légumineuse alimentaire, Vigna unguiculata (L.) Walp. Thèse de doctorat, Fac. Univ. Sci. Agron. Gembloux, Belgique.Google Scholar
  9. Fotso, M., Azanza, J. L., Pasquet, R. S., Raymond, J. 1994Molecular heterogeneity of cowpea (Vigna unguiculata Fabaceae) seed storage proteinsPl. Syst. Evol.191-1/23956CrossRefGoogle Scholar
  10. Gonzalez, A., Wong, A., Delgado-Salinas, A., Papa, R., Gepts, P. 2005Assessment of inter simple sequence repeat markers to differentiate sympatric wild and domesticated populations of common beanCrop Sci.45-2606615CrossRefGoogle Scholar
  11. Haygood, R., Ives, A. R., Andow, D. A. 2003Consequences of recurrent gene flow from crops to wild relativesProc. Roy. Soc. London - Series B: Biol. Sci.27018791886CrossRefGoogle Scholar
  12. Linder, C. R., Taha, I., Seiler, G. J., Snow, A. A., Rieseberg, L. H. 1998Long-term introgression of crop genes into wild sunflower populationsTheor. Appl. Genet.96-3/4339347CrossRefGoogle Scholar
  13. Menéndez, C. M., Hall, A. E., Gepts, P. 1997A genetic linkage map of cowpea (Vigna unguiculata) developed from cross between two inbred, domesticated linesTheor. Appl. Genet9512101217CrossRefGoogle Scholar
  14. Mignouna, H. D., Ng, N. Q., Ikea, J., Thottappilly, G. 1998Genetic diversity in cowpea as revealed by random amplified polymorphic DNAJ. Genet. Breed.52151159Google Scholar
  15. Ng, N. Q. 1995

    Cowpea, Vigna unguiculata (Leguminosae-Papilionoideae)

    Smartt, J.Simmonds, N. W. eds. Evolution of crop plants2LongmansNew York326332
    Google Scholar
  16. Nodari, R. O., Koinange, E. M. K., Kelly, J. D., Gepts, P. 1992Towards an integrated linkage map of common bean. II. Development of genomic DNA probes and levels of restriction fragment length polymorphismTheor. Appl. Genet.84186192CrossRefGoogle Scholar
  17. Padulosi S. (1993) Genetic diversity, taxonomy and ecogeographic survey of the wild relatives of cowpea (Vigna unguiculata (L.) Walpers). PhD Thesis, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.Google Scholar
  18. Palmer, J. D., Osorio, B., Thompson, W. F. 1988Evolutionary significance of inversions in legume chloroplast DNAsCurr. Genet.146574CrossRefGoogle Scholar
  19. Panella, L., Gepts, P. 1992Genetic relationships within Vigna unguiculata (L.) Walp. based on isozyme analysesGenet. Resources Crop Evol.397188Google Scholar
  20. Panella, L., Kami, J., Gepts, P. 1993Vignin diversity in wild and cultivated taxa of Vigna unguiculata (L.) Walp. (Fabaceae)Econ. Bot.47-4371386Google Scholar
  21. Papa, R., Gepts, P. 2003Asymmetry of gene flow and differential geographical structure of molecular diversity in wild and domesticated common bean (Phaseolus vulgaris L.) from MesoamericaTheor. Appl. Genet.106-2239250Google Scholar
  22. Papa, R., Acosta, J., Delgado-Salinas, A., Gepts, P. 2005A genome-wide analysis of differentiation between wild and domesticated Phaseolus vulgaris from MesoamericaTheor. Appl. Genet.11111471158PubMedCrossRefGoogle Scholar
  23. Pasquet, R. S. 1993Classification infraspécifique des formes spontanées de Vigna unguiculata (L.) Walp. à partir de données morphologiquesBull. Jard. Bot. Nat. Belg.62-1/4127173Google Scholar
  24. Pasquet, R. S., Fotso, M. 1994Répartition des cultivars de niébé (Vigna unguiculata (L.) Walp.) du Cameroun: influence du milieu et des facteurs humainsJ. Agric. Trad. Bot. Appl.3693143Google Scholar
  25. Pasquet, R. S. 1998Morphological study of cultivated cowpea Vigna unguiculata (L.) Walp. Importance of ovule number and definition of cv gr MelanophthalmusAgronomie18-16170Google Scholar
  26. Pasquet, R. S. 1999Genetic relationships among subspecies of Vigna unguiculata (L.) Walp. based on allozyme variationTheor. Appl. Genet.9811041119CrossRefGoogle Scholar
  27. Pasquet, R. S. 2000Allozyme diversity of cultivated cowpea Vigna unguiculata (L.) WalpTheor. Appl. Genet.101211219CrossRefGoogle Scholar
  28. Pasquet, R. S., Baudoin, J. P. 2001

    Cowpea

    Charrier, A.Jacquot, M.Hamon, S.Nicolas, D. eds. Tropical plant breeding: 177-198Science publishersEnfield, USA - CIRAD, Montpellier, France
    Google Scholar
  29. Rieseberg, L. H., Soltis, D. E. 1991Phylogenetic consequences of cytoplasmic gene flow in plantsEvol. Trends Plants56584Google Scholar
  30. Steele, W. M. 1976

    Cowpeas, Vigna unguiculata (Leguminosae-Papilionatae)

    Simmonds, N. W. eds. Evolution of crop plantsLongmansLondon183185
    Google Scholar
  31. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., Higgins, D. G. 1997The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis toolsNucl. Ac. Res.2548764882CrossRefGoogle Scholar
  32. Ugozzoli, L., Wallace, R. B. 1991Allele-specific polymerase chain reactionMethods Enzymol24248CrossRefGoogle Scholar
  33. Vaillancourt, R. E., Weeden, N. F. 1992Chloroplast DNA polymorphism suggests Nigerian center of domestication for the cowpea, Vigna unguiculata, LeguminosaeAmer. J. Bot.7911941199CrossRefGoogle Scholar
  34. Vaillancourt, R. E., Weeden, N. F., Barnard, J. 1993Isozyme diversity in the cowpea species complexCrop Sci.33-3606613CrossRefGoogle Scholar
  35. Westphal, E. 1974Pulses in Ethiopia, their taxonomy and agricultural significance. Agricultural Research Reports 815Centre for Agricultural Publishing and DocumentationWageningenGoogle Scholar
  36. Whitton, J., Wolf, D. E., Arias, D. M., Snow, A. A., Rieseberg, L. H. 1997The persistence of cultivar alleles in wild populations of sunflowers five generations after hybridizationTheor. Appl. Genet.95-1/23340CrossRefGoogle Scholar
  37. Zizumbo-Villarreal, D., Colunga-Garcia, Marin P., Payro, Cruz E., Delgado-Valerio, P., Gepts, P. 2005Population structure and evolutionary dynamics of wild-weedy-domesticated complexes of common bean in a Mesoamerican regionCrop Sci.45–310731083CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2006

Authors and Affiliations

  1. 1.Department of Plant Sciences/MS1, Section of Crop and Ecosystem SciencesUniversity of CaliforniaDavisUSA
  2. 2.IRD (Département Ressources Vivantes) Paris Cedex 10France
  3. 3.ICIPENairobiKenya

Personalised recommendations