Plant Systematics and Evolution

, Volume 262, Issue 1–2, pp 1–12 | Cite as

Intragenomic diversity and phylogenetic systematics of wild rosemaries (Rosmarinus officinalis L. s.l., Lamiaceae) assessed by nuclear ribosomal DNA sequences (ITS)

  • J. A. RossellóEmail author
  • R. Cosín
  • M. Boscaiu
  • O. Vicente
  • I. Martínez
  • P. Soriano


Nuclear ribosomal sequences (ITS) were used to study species boundaries and to infer phylogenetic patterns in wild rosemaries (Rosmarinus officinalis, R. eriocalyx, R. tomentosus). Intragenomic polymorphisms (overlapping peaks and in some cases unreadable sequences) were found throughout the sequencing electrophoretograms of most Rosmarinus accessions. Sequencing the cloned ITS products from representative individuals resulted in 25 ribotypes differing at 59 variable sites. Average sequence divergence among clones was 1.75%, and the most divergent sequences differed by 3.48%. No single ribotype was shared between any two-paired species. The highest values of intragenomic divergence were similar in R. officinalis (1.63%) and R. eriocalyx (1.14%–2.12%), and contrast with those shown by R. tomentosus (0.97%). Sequence data suggest that most divergent rDNA sequences within individuals belong to paralogous loci that apparently are not pseudogenes. A detailed inspection of direct and cloned sequences does not show evidence that the intragenomic polymorphism found is due to interspecific hybridization. Phylogenetic analyses of cloned sequences suggested that both R. officinalis and R. tomentosus were monophyletic, whereas R. tomentosus clones were nested within a paraphyletic R. eriocalyx.


Rosmarinus rosemary paralogous loci phylogeny Mediterranean flora 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amaral Franco J., Rocha Alonso M. L. (1973) Rosmarinus L. In: Tutin T. G., Heywood V. H., Burges N. A., Moore D. M., Valentine D. H., Walters S. W., Webb D. A. (eds.) Flora Europaea Cambridge University Press, Cambridge 3 p. 187.Google Scholar
  2. Anonymous (2000) Red list of Spanish vascular flora (valuation according to IUCN categories). Conservación Vegetal 6: 11–38.Google Scholar
  3. Arnheim, N. 1983Concerted evolution of multigene familiesSinauerSunderland, MAGoogle Scholar
  4. Avise, J. C. 1994Molecular markers, natural history and evolutionChapman and HallNew YorkGoogle Scholar
  5. Bailey, C. D., Carr, T. G., Harris, S. A., Hughes, C. E. 2003Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenesMolec. Phylogenet. Evol.29435455PubMedCrossRefGoogle Scholar
  6. Baldwin, B. G., Sanderson, M. J., Porter, J. M., Wojciechowski, M. F., Campbell, C. S., Donoghue, M. J. 1995The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogenyAnn. Missouri. Bot. Gard.82247277CrossRefGoogle Scholar
  7. Boelens, M. H. 1985The essential oil from Rosmarinus officinalis LPerf. & Flav.102137Google Scholar
  8. Brasier, C. M., Cooke, D. E. L., Duncan, J. M. 1999Origin of a new Phytophtora pathogen through interspecific hybridizationProc. Natl. Acad. Sci. USA9658785883PubMedCrossRefGoogle Scholar
  9. Buckler, E. S.,IV, Holtsford, T. P. 1996 Zea ribosomal repeat evolution and mutation patternsMolec. Biol. Evol.13612622PubMedGoogle Scholar
  10. Campbell, C. S., Wojciechowski, M. F., Baldwin, B. G., Alice, L. A., Donoghue, M. J. 1997Persistent nuclear ribosomal DNA sequence polymorphism in the Amelanchier agamic complex (Rosaceae)Molec. Biol. Evol.148190PubMedGoogle Scholar
  11. Doyle, J., Doyle, J. J. 1987A rapid DNA isolation procedure for small quantities of fresh leaf tissuePhytochem. Bull.191115Google Scholar
  12. Dubcovsky, J., Dvorak, J. 1995Ribosomal RNA multigene loci: nomads of the Triticeae genomesGenetics14013671377PubMedGoogle Scholar
  13. Dunning, A. M., Talmud, P., Humphries, S. E. 1988Errors in the polymerase chain reactionNucleic Acids Res.1610393PubMedGoogle Scholar
  14. ElOualidi, J., Verneau, O., Puech, S., Dubuisson, J.-Y. 1999Utility of rDNA ITS sequences in the systematics of Teucrium section Polium (Lamiaceae)Pl. Syst. Evol.2154970CrossRefGoogle Scholar
  15. Fernández, Casas J. 1973Números cromosomáticos de plantas españolasCuad. Ci. Biol. Granada23942Google Scholar
  16. Gautier, F., Caluzon, G., Suk, J. P., Violanti, D. 1994Age et durée de la crise de salinité MessinienneCompt. Rend. Acad. Sci. Paris31811031109Google Scholar
  17. Greuter W., Burdet H. M., Long G. (1986) Med-Checklist. 3. Dicotyledones (Convolvulaceae-Labiatae). Geneve and Berlin.Google Scholar
  18. Hanson, R. E., Islam-Faridi, M. N., Percival, E. A., Crane, C. F., Ji, Y., McKnight, T. D., Stelly, D. M., Price, H. J. 1996Distribution of 5S and 18S–28S rDNA loci in a tetraploid cotton (Gossypium hirsutum L.) and its putative diploid ancestorsChromosoma1055561PubMedGoogle Scholar
  19. Heywood, V., Skoula, M. 1999The MEDUSA Network: Conservation and sustainable use of wild plants of the Mediterranean regionJanick, J. eds. Perspectives on new crops and new usesASHS PressAlexandria148151Google Scholar
  20. Hershkovitz, M. A., Zimmer, E. A. 1996Conservation patterns in angiosperm rDNA ITS2 sequencesNucleic Acids Res.2428572876PubMedCrossRefGoogle Scholar
  21. Jobes, D. V., Thien, L. B. 1997A conserved motif in the 5.8 S Ribosomal RNA (rRNA) gene is a useful diagnostic marker for plant internal transcribed spacer (ITS) SequencesPl. Molec. Biol. Reporter15326334CrossRefGoogle Scholar
  22. Kaufmann, M., Wink, M. 1994Molecular systematics of the Nepetoideae (Family Labiatae): phylogenetic implications from rbcL gene sequencesZ. Naturforsch.49c635645Google Scholar
  23. Kimura, M. 1980A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequencesJ. Mol. Evol.16111120PubMedCrossRefGoogle Scholar
  24. Kumar, S., Tamura, K., Jakobsen, I. B., Nei, M. 2001MEGA2: Molecular Evolutionary Genetics Analysis softwareArizona State UniversityTempe, Arizona, USAGoogle Scholar
  25. Liston, A., Robinson, W. A., Oliphant, J. M., Alvarez, Buylla E. R. 1996Length variation in the nuclear ribosomal DNA internal transcribed spacer region of non-flowering plantsSyst. Bot.21109120CrossRefGoogle Scholar
  26. Liu, J.-S., Schardl, C. L. 1994A conserved sequence in internal transcribed spacer 1 of plant nuclear rRNA genesPl. Molec. Biol.26775778CrossRefGoogle Scholar
  27. Mai, J. C., Coleman, A. W. 1997The Internal Transcribed Spacer 2 exhibits a common secondary structure in green algae and flowering plantsJ. Mol. Evol.44258271PubMedCrossRefGoogle Scholar
  28. Mayol, M., Rosselló, J. A. 2001Why nuclear ribosomal DNA spacers (ITS) tells different histories in Quercus Molec. Phylogenet. Evol.19167176PubMedCrossRefGoogle Scholar
  29. Mort, M. E., Soltis, P. S., Soltis, D. E., Mabry, M. 2000Comparison of three methods for estimating internal support on phylogenetic treesSyst. Biol.49160171PubMedCrossRefGoogle Scholar
  30. O'Kane, S. L., Schaal, B. A., Al-Shehbaz, I. A. 1996The origins of Arabidopsis suecica (Brassicaceae) as indicated by nuclear rDNA sequencesSyst. Bot.21559566CrossRefGoogle Scholar
  31. Posada, D., Crandall, K. A. 1998Modeltest: testing the model of DNA substitutionBioinformatics14817818PubMedCrossRefGoogle Scholar
  32. Prather, L. A., Monfils, A. K., Posto, A. L., Williams, R. A. 2002Monophyly and phylogeny of Monarda (Lamiaceae): evidence from the internal transcribed spacer (ITS) region of nuclear ribosomal DNASyst. Bot.27127137Google Scholar
  33. Razafimandimbison, S. G., Kellogg, E. A., Bremer, B. 2004Recent origin and phylogenetic implications of high-level ITS polymorphisms: a case study from Naucleae (Rubiaceae)Syst. Biol.53177192PubMedCrossRefGoogle Scholar
  34. Rauscher, J. T., Doyle, J. J., Brown, H. D. 2002Internal transcribed spacer repeat-specific primers and the analysis of hybridization in the Glycine tomentella (Leguminosae) polyploid complexMolec. Ecol.1126912702CrossRefGoogle Scholar
  35. Rosselló J. A., Lázaro A., Cosín R., Molins A. (2006) A phylogeographic split in Buxus balearica (Buxaceae) as evidenced from nuclear ribosomal markers: when ITS paralogues are welcome. J. Molec. Evol. (accepted).Google Scholar
  36. Rosúa, J. L. 1981El complejo Rosmarinus eriocalyx-tomentosus en la Península IbéricaAnales Jard. Bot. Madrid37587595Google Scholar
  37. Rosúa, J. L. 1986Contribución al estudio del género Rosmarinus L. en el mediterráneo occidentalLagascalia14179187Google Scholar
  38. Rosúa, J. L., García-Granados, A. 1987Analyse des huiles essentielles d'espèces du genre Rosmarinus L. et leur intérêt en tant que caractère taxonomiquePl. Med. Phytothér.21138143Google Scholar
  39. Saitou, N., Nei, M. 1987The neighbor-joining method: a new method for reconstructing phylogenetic treesMolec. Biol. Evol.4406425PubMedGoogle Scholar
  40. Sang, T., Crawford, D. J., Stuessy, T. F. 1995Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: Implications for biogeography and concerted evolutionProc. Natl. Acad. Sci., USA9268136817PubMedCrossRefGoogle Scholar
  41. Schiebel, K., Hemleben, V. 1989Nucleotide sequence of the 18 S-25 S spacer region from rDNA of mung beanNucleic Acids Res.172852PubMedGoogle Scholar
  42. Soriano, M. C., Sotomayor, J. A., Sánchez, P., García, M. C. 1993Essential oils of the Rosmarinus eriocalyx-tomentosus complex in Southeast SpainJ. Essent. Oil Research5243246Google Scholar
  43. Steane, D. A., Scotland, R. W., Mabberley, D. J., Olmstead, R. G. 1999Molecular systematics of Clerodendrum (Lamiaceae): ITS sequences and total evidenceAmer. J. Bot.8698107CrossRefGoogle Scholar
  44. Swofford, D. 2002PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4SinauerSunderland, MAGoogle Scholar
  45. Szalanski, A., Steinauer, G., Bischof, R., Petersen, J. 2001Origin and conservation genetics of the threatened Ute ladies'-tresses, Spiranthes diluvialis (Orchidaceae)Amer. J. Bot.88177180Google Scholar
  46. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., Higgins, D. G. 1997The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis toolsNucleic Acids Res.2448764882CrossRefGoogle Scholar
  47. Turrill, W. 1920The genus Rosmarinus Kew Bull.20105107Google Scholar
  48. Whittall, J., Liston, A., Gisler, S., Meinke, R. J. 2000Detecting nucleotide additivity from direct sequences is a SNAP: an example from Sidalcea (Malvaceae)Pl. Biol.2211217CrossRefGoogle Scholar
  49. White, T. J., Bruns, T., Lee, S., Taylor, J. 1990Amplification and direct sequencing of fungal ribosomal RNA genes for phylogeneticsInnis, M. A.Gelfand, D. H.Sninsky, J. J.White, T. J. eds. PCR Protocols: a guide to methods and applicationsAcademic PressNew York315322Google Scholar
  50. Xia, X., Xie, Z. 2001DAMBE: Data analysis in molecular biology and evolutionJ. Heredity92371373CrossRefGoogle Scholar
  51. Yokota, Y., Kawata, T., Iida, Y., Kato, A., Tanifuji, S. 1989Nucleotide sequences of the 5.8 S rRNA gene and internal transcriber spacer regions in carrot and broad bean ribosomal DNAJ. Molec. Evol.29294301PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2006

Authors and Affiliations

  • J. A. Rosselló
    • 1
    Email author
  • R. Cosín
    • 1
  • M. Boscaiu
    • 1
  • O. Vicente
    • 2
  • I. Martínez
    • 1
  • P. Soriano
    • 1
  1. 1.Jardi BotànicUniversitat de ValènciaValènciaSpain
  2. 2.Instituto de Biología Molecular y Celular de PlantasUniversidad Politécnica de ValènciaValènciaSpain

Personalised recommendations