Plant Systematics and Evolution

, Volume 260, Issue 2–4, pp 199–221 | Cite as

Floral structure and systematics in four orders of rosids, including a broad survey of floral mucilage cells

  • M. L. Matthews
  • P. K. Endress


Phylogenetic studies have greatly impacted upon the circumscription of taxa within the rosid clade, resulting in novel relationships at all systematic levels. In many cases the floral structure of these taxa has never been compared, and in some families, even studies of their floral structure are lacking. Over the past five years we have compared floral structure in both new and novel orders of rosids. Four orders have been investigated including Celastrales, Oxalidales, Cucurbitales and Crossosomatales, and in this paper we attempt to summarize the salient results from these studies. The clades best supported by floral structure are: in Celastrales, the enlarged Celastraceae and the sister relationship between Celastraceae and Parnassiaceae; in Oxalidales, the sister relationship between Oxalidaceae and Connaraceae, and Tremandraceae embedded in Elaeocarpaceae; in Cucurbitales, the sister relationship between Corynocarpaceae plus Coriariaceae, and the grouping of the core Cucurbitales (Cucurbitaceae, Begoniaceae, Tetramelaceae, Datiscaceae); in Crossosomatales, the sister relationship between Ixerbaceae plus Strasburgeriaceae, and between this clade and Geissolomataceae. The core Crossosomatales (Crossosomataceae, Stachyuraceae, Staphyleaceae) and Celastrales as an order are not strongly supported by floral structure. In addition, a new floral feature of potential systematic interest is assessed. Specifically the presence of special cells in flowers with a thickened mucilaginous inner cell wall and a distinct, remaining cytoplasm is surveyed in 88 families and 321 genera (349 species) of basal angiosperms and eudicots. These cells were found to be most common in rosids, particulary fabids (Malpighiales, Oxalidales, Fabales, Rosales, Fagales, Cucurbitales), but were also found in some malvids (Malvales). They are notably absent or rare in asterids (present in campanulids: Aquifoliales, Stemonuraceae) and do not appear to occur in other eudicot clades or in basal angiosperms. Within the flower they are primarily found in the abaxial epidermis of sepals.


androecium Celastrales Crossosomatales Cucurbitales gynoecium Oxalidales 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anisimova, G. M. 1983BegoniaceaeYakovlev, M. S. eds. Comparative embryology of flowering plants Phytolaccaceae-ThymelaeaceaeNaukaLeningrad144148Google Scholar
  2. APG (The Angiosperm Phylogeny Group). (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot. J. Linn. Soc. 141: 399–436.Google Scholar
  3. Bakker, M. E. 1992Oil and mucilage cells in dicotyledons: ontogeny ultrastructure, distribution and systematic valueDoctoral thesis, University of LeidenNetherlandsGoogle Scholar
  4. Bakker, M. E., Baas, P. 1993Cell-walls in oil and mucilage cellsActa Bot. Neerl.42133139Google Scholar
  5. Bakker M. E., Gerritsen A. F. (1992a) The development of mucilage cells in Hibiscus schizopetalus. Acta Bot. Neerl. 41: 31–42.Google Scholar
  6. Bakker M. E., Gerritsen A. F. (1992b) Oil and mucilage cells in Annona (Annonaceae) and their systematic significance. Blumea 36: 411–438.Google Scholar
  7. Bakker M. E., Gerritsen A. F. (1992c) Leaf anatomy of Cinnamomum Schaeffer (Lauraceae) with special reference to oil and mucilage cells. Blumea 37: 1–30.Google Scholar
  8. Bouchet, P. 1973Etude ultrastructurale de la sécrétion du mucilage chez deux espèces de Tiliacées: Tilia vulgaris Hayne et Entelea arborescens RBr. Bull. Bot. Soc. Fr.120279292Google Scholar
  9. Bredenkamp, C. L., Wyk, A. E. 1999Structure of mucilaginous epidermal cell walls in Passerina (Thymelaeaceae)Bot. J. Linn. Soc.129223238CrossRefGoogle Scholar
  10. Cameron, K. M. 2003On the phylogenetic position of the New Caledonian endemic families Paracryphiaceae, Oncothecaceae, and Strasburgeriaceae: a comparison of molecules and morphologyBot. Rev.68428443CrossRefGoogle Scholar
  11. Corner, E. J. H. 1976The seeds of dicotyledonsCambridge University PressCambridgeGoogle Scholar
  12. Cronquist, A. 1981An integrated system of classification of flowering plantsColumbia University PressNew YorkGoogle Scholar
  13. Dahlgren, R., Rao, V. S. 1969A study of the family GeissolomataceaeBot. Not.122207227Google Scholar
  14. Davies, T. J., Barraclough, T. G., Chase, M. W., Soltis, P. S., Soltis, D. E., Savolainen, V. 2004Darwin's abominable mystery: insights from a supertree of the angiospermsProc. Natl. Acad. Sci.10119041909PubMedCrossRefGoogle Scholar
  15. Endress P. K., Matthews M. L. (2006a) Elaborate petals and staminodes in eudicots: structure, function, evolution. Org. Div. Ecol. (in press). Google Scholar
  16. Endress P. K., Matthews M. L. (2006b) First steps towards a floral structural characterization of the major rosid subclades. Pl. Syst. Evol. 260: 223–251.Google Scholar
  17. Endress, P. K., Igersheim, A. 1997Gynoecium diversity and systematics of the LauralesBot. J. Linn. Soc.12593168CrossRefGoogle Scholar
  18. Endress, P. K., Igersheim, A. 1999Gynoecium diversity and systematics of the basal eudicotsBot. J. Linn. Soc.130305393CrossRefGoogle Scholar
  19. Esau, K. 1977Anatomy of seed plants2John Wiley & SonsNew YorkGoogle Scholar
  20. Fahn, A. 1974Plant anatomy2Pergamon PressOxfordGoogle Scholar
  21. Fahn, A. 1979Secretory tissues in plantsAcademic PressNew YorkGoogle Scholar
  22. Fahn, A. 1988Secretory tissues in vascular plantsNew Phytol.108229257CrossRefGoogle Scholar
  23. Gregory, M., Baas, P. 1989A survey of mucilage cells in vegetative organs of the dictotyledonsIsrael J. Bot.38125174Google Scholar
  24. Huber, H. 1993 Neurada, eine Gattung der MalvalesSendtnera1710Google Scholar
  25. Igersheim, A., Endress, P. K. 1997Gynoecium diversity and systematics of the Magnoliales and winteroidsBot. J. Linn. Soc.124213271CrossRefGoogle Scholar
  26. Judd, W. S., Olmstead, R. G. 2004A survey of tricolpate (eudicot) phylogenetic relationshipsAmer. J. Bot.9116271644Google Scholar
  27. Kårehed, J. 2001Multiple origin of the tropical forest tree family IcacinaceaeAmer. J. Bot.8822592274Google Scholar
  28. Lemmens R. H. M. J. (1989) Heterostyly/Pollen morphology. In: Breteler F. J. (ed.) The Connaraceae - a taxonomic study with emphasis on Africa. AUWP 89-6: 56-72/73-75.Google Scholar
  29. Lyshede O. B. (1977) Studies on the mucilage cells in the leaf of Spartocytisus filipes W. B. Planta 133: 255–260.Google Scholar
  30. Mariani, P., Rascio, N., Baldan, B., Paiero, P., Urso, T. 1988Epidermal mucilage cells in leaves of Salix speciesFlora181137145Google Scholar
  31. Matthews, M. L., Endress, P. K. 2002Comparative floral structure and systematics in Oxalidales (Oxalidaceae, Connaraceae, Brunelliaceae, Cephalotaceae, Cunoniaceae, Elaeocarpaceae, Tremandraceae)Bot. J. Linn. Soc.140321381CrossRefGoogle Scholar
  32. Matthews, M. L., Endress, P. K. 2004Comparative floral structure and systematics in Cucurbitales (Corynocarpaceae, Coriariaceae, Tetramelaceae, Datiscaceae, Begoniaceae, Cucurbitaceae, Anisophylleaceae)Bot. J. Linn. Soc.145129185CrossRefGoogle Scholar
  33. Matthews M. L., Endress P. K. (2005a) Comparative floral structure and systematics in Crossosomatales (Crossosomataceae, Stachyuraceae, Staphyleaceae, Aphloiaceae, Geissolomataceae, Ixerbaceae, Strasburgeriaceae). Bot. J. Linn. Soc. 147: 1–46. Google Scholar
  34. Matthews M. L., Endress P. K. (2005b) Comparative floral structure and systematics in Celastrales (Celastraceae, Parnassiaceae, Lepidobotryaceae). Bot. J. Linn. Soc. 149: 129–194.Google Scholar
  35. Matthews, M. L., Endress, P. K., Schönenberger, J., Friis, E. M. 2001A comparison of floral structures of Anisophylleaceae and Cunoniaceae and the problem of their systematic relationshipsAnn. Bot.88439455CrossRefGoogle Scholar
  36. Mauseth, J. D. 1980A stereological morphometric study of the ultrastructure of mucilage cells in Opuntia polyacantha (Cactaceae)Bot. Gaz.141374378CrossRefGoogle Scholar
  37. Merino Sutter D., Forster P. I., Endress P. K. (2006) Female flowers and systematic position of Picrodendraceae (Euphorbiaceae s.l., Malpighiales). Pl. Syst. Evol. (in press).Google Scholar
  38. Metcalfe C. R. (1987) Anatomy of the dicotyledons 3 (2nd edn.). Clarendon Press, Oxford.Google Scholar
  39. Metcalfe, C. R., Chalk, L. 1950Anatomy of the dicotyledons I, IIClarendon PressOxfordGoogle Scholar
  40. Metcalfe C. R., Chalk L. (1979) Anatomy of the dicotyledons 1 (2nd edn.). Clarendon Press, Oxford.Google Scholar
  41. Metcalfe C. R., Chalk L. (1983) Anatomy of the dicotyledons 2 (2nd edn.). Clarendon Press, Oxford.Google Scholar
  42. Mollenhauer, H. H. 1967The fine structure of mucilage secreting cells of Hibiscus esculentus podsProtoplasma63353362CrossRefGoogle Scholar
  43. Napp-Zinn K. (1973) Anatomie des Blattes. II. Angiospermen A, 1. Handbuch der Pflanzenanatomie, Spezieller Teil VIII 2A. Borntraeger, Berlin.Google Scholar
  44. Rao, S. R. S., Ramayya, N. 1984Structure and taxonomic distribution of epidermal idioblasts in the MalvalesIndian J. Bot.7117123Google Scholar
  45. Savolainen, V., Fay, M. F., Albach, D. C., Backlund, A., Bank, M., Cameron, K. M., Johnson, S. A., Lledó, M. D., Pintaud, J.-C., Powell, M., Sheahan, M. C., Soltis, D. E., Soltis, P. S., Weston, P., Whitten, W. M., Wurdack, K. J., Chase, M. W. 2000Phylogeny of the eudicots: a nearly complete familial analysis based on rbcL gene sequencesKew Bull.55257309Google Scholar
  46. Schönenberger, J., Friis, E. M., Matthews, M. L., Endress, P. K. 2001Cunoniaceae in the Cretaceous of Europe: evidence from fossil flowersAnn. Bot.88423437CrossRefGoogle Scholar
  47. Schwarzbach, A. E., Ricklefs, R. E. 2000Systematic affinities of Rhizophoraceae and Anisophylleaceae, and intergeneric relationships within Rhizophoraceae, based on chloroplast DNA, nuclear ribosomal DNA, and morphologyAmer. J. Bot.87547564CrossRefGoogle Scholar
  48. Scott, F. M., Bystrom, B. G. 1970Mucilaginous idioblasts in okra, Hibiscus esculentus LRobson, N. K. B.Cutler, D. F.Gregory, M. eds. New research in plant anatomyAcademic PressNew YorkGoogle Scholar
  49. Simmons M. P., Clevinger C. C., Savolainen V., Archer R. H., Mathews S., Doyle J. J. (2001a) Phylogeny of the Celastraceae inferred from phytochrome B and morphology. Amer. J. Bot. 88: 313–325.Google Scholar
  50. Simmons M. P., Savolainen V., Clevinger C. C., Archer R. H., Davis J. I. (2001b) Phylogeny of the Celastraceae inferred from 26S nrDNA, phytochrome B, atpB, rbcL, and morphology. Molec. Phylogenet. Evol. 19: 353–366.Google Scholar
  51. Singh, D. 1955Embryological studies in Cucumis melo var. pubescens WilldJ. Ind. Bot. Soc.347278Google Scholar
  52. Solereder H. (1899/1908) Systematische Anatomie der Dicotyledonen I/II. Enke, Stuttgart.Google Scholar
  53. Soltis, D. E., Soltis, P. S., Chase, M. W., Mort, M. E., Albach, D. C., Zanis, M., Savolainen, V., Hahn, W. H., Hoot, S. B., Fay, M. F., Axtell, M., Swensen, S. M., Nixon, K. C., Farris, J. S. 2000Angiosperm phylogeny inferred from a combined data set of 18S rDNA, rbcL and atpB sequencesBot. J. Linn. Soc.133381461CrossRefGoogle Scholar
  54. Soltis, D. E., Soltis, P. S., Endress, P. K., Chase, M. W. 2005Phylogeny and evolution of angiospermsSinauer, SunderlandMAGoogle Scholar
  55. Sosa, V., Chase, M. W. 2003Phylogenetics of Crossosomataceae based on rbcL sequence dataSyst. Bot.2896105Google Scholar
  56. Stevens P. F. (2001 onwards) Angiosperm Phylogeny Website. Scholar
  57. Tobe, H., Raven, P. H. 1987Systematic embryology of the AnisophylleaceaeAnn. Missouri Bot. Gard.74126CrossRefGoogle Scholar
  58. Trachtenberg, S., Fahn, A. 1981The mucilage cells of Opuntia ficus-indica (L.) Mill. - development, ultrastructure, and mucilage secretionBot. Gaz.142206213CrossRefGoogle Scholar
  59. Trognitz, B. R., Hermann, M. 2001Inheritance of tristyly in Oxalis tuberosa (Oxalidaceae)Heredity86564573PubMedCrossRefGoogle Scholar
  60. Tschirch, A. 1889Angewandte Pflanzenanatomie. Vol. 1Urban und SchwarzenbergWienGoogle Scholar
  61. Volkens, G. 1887Die Flora der aegyptisch-arabischen WüsteBorntraegerBerlinGoogle Scholar
  62. Wagstaff, S. J., Dawson, M. I. 2000Classification, origin, and patterns of diversification of Corynocarpus (Corynocarpaceae) inferred from DNA sequencesSyst. Bot.25134149CrossRefGoogle Scholar
  63. Walliczek, H. 1893Studien über die Membranschleime vegetativer OrganeJahrb. Wiss. Bot.25209277Google Scholar
  64. West, W. C. 1969Ontogeny of oil cells in the woody Ranales. Bull. Torrey Bot.Club96329344CrossRefGoogle Scholar
  65. Zhang L.-B., Renner S. S. (2003) Phylogeny of Cucurbitales inferred from seven chloroplast and mitochondrial loci. Botany 2003 Abstract.Google Scholar
  66. Zhang, L.-B., Simmons, M. P. 2006Phylogeny and delimitation of the Celastrales inferred from nuclear and plastid genesSyst. Bot.31122137CrossRefGoogle Scholar
  67. Zhang, L.-B., Simmons, M. P., Kocyan, A., Renner, S. S. 2006Phylogeny of the Cucurbitales based on DNA sequences of nine loci from three genomes: implications for morphological and sexual system evolutionMolec. Phylogenet. Evol.39305322PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2006

Authors and Affiliations

  1. 1.Institute of Systematic BotanyUniversity of ZurichZurichSwitzerland

Personalised recommendations