Plant Systematics and Evolution

, Volume 260, Issue 2–4, pp 87–106 | Cite as

Reproductive structures and phylogenetic framework of the rosids - progress and prospects

  • J. SchönenbergerEmail author
  • M. von Balthazar


With ca 70.000 species the rosids contain more than a quarter of the total angiosperm species diversity. This taxonomic richness is reflected in a tremendous variety of floral organization and architecture. Rosids have received extensive molecular phylogenetic study. As a result, the monophyly and taxonomic composition of the group are well established. In addition, many subclades at the order level are now apparent. Deeper relationships, however, are still largely equivocal. As in many other parts of the plant tree of life, it will be impossible to reach an adequate understanding of the evolutionary history of the rosids without taking into account information from comparative morphological studies of extant and, in particular, also of fossil taxa. The fossil record of rosids is rich in well-preserved reproductive structures, and together with recent results from comparative studies of extant rosids, provides a wealth of floral structural data. Although much remains to be done at all levels, fresh attempts to synthesize and possibly reconcile results from molecular phylogenetics, comparative floral morphology, and palaeobotany, seem timely.


Fabids floral structure fossil flowers malvids phylogeny rosids 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alverson, W. S., Karol, K. G., Baum, D. A., Chase, M. A., Swensen, S. M., McCourt, R., Sytsma, K. J. 1998Circumscription of the Malvales and relationships to other Rosidae: evidence from rbcL sequence dataAmer. J. Bot.85876887CrossRefGoogle Scholar
  2. APG (The Angiosperm Phylogeny Group) (1998) An ordinal classification for the families of flowering plants. Ann. Missouri Bot. Gard. 85: 531–553.Google Scholar
  3. APG (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot. J. Linn. Soc. 141: 399–436.Google Scholar
  4. Barkman, T. J., Lim, S. H., Salleh, K. M., Mais, J. 2004Mitochondrial DNA sequences reveal the photosynthetic relatives of Rafflesia, the world's largest flowerProc. Natl. Acad. Sci. USA101787792PubMedCrossRefGoogle Scholar
  5. Basinger, J. F., Dilcher, D. L. 1984Ancient bisexual flowersScience224511513Google Scholar
  6. Bayer, C., Fay, M. F., Bruijn, A. Y., Savolainen, V., Morton, C. M., Kubitzki, K., Alverson, W. S., Chase, M. W. 1999Support for an expanded family concept of Malvaceae within a recircumscribed order Malvales: a combined analysis of plastid atpB and rbcL sequencesBot. J. Linnean Soc.129267303CrossRefGoogle Scholar
  7. Bernhard, A. 1999Flower structure, development, and systematics in Passifloraceae and in Abatia (Flacourtiaceae)Int. J. Pl. Sci.160135150CrossRefGoogle Scholar
  8. Bernhard, A., Endress, P. K. 1999Androecial development and systematics in Flacourtiaceae s.lPl. Syst. Evol.215141155CrossRefGoogle Scholar
  9. Blarer, A., Nickrent, D., Endress, P. K. 2004Floral structure and systematics in Apodanthaceae (Rafflesiales)Pl. Syst. Evol.245119142CrossRefGoogle Scholar
  10. Chase, M. W., Soltis, D. E., Olmstead, R. G., Morgan, D., Les, D. H., Mishler, B. D., Duvall, M. R., Price, R. A., Hills, H. G., Qui, Y.-L., Kron, K. A., Rettig, J. H., Conti, E., Palmer, J. D., Manhart, J. R., Sytsma, K. J., Michaels, H. J., Kress, W. J., Karol, K. G., Clark, W. D., Hedrén, M., Gaut, B. S., Jansen, R. K., Kim, K.-J., Wimpee, C. F., Smith, J. F., Furnier, G. R., Strauss, S. H., Xiang, Q.-Y., Plunkett, G. M., Soltis, P. S., Swensen, S. M., Williams, S. E., Gadek, P. A., Quinn, C. J., Eguiarte, L. E., Golenberg, E., Learns, G. H., Graham, S. W., Barrett, S. C. H., Dayanandan, S., Albert, V. 1993Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcLAnn. Missouri Bot. Gard.80528580CrossRefGoogle Scholar
  11. Chase, M. W., Lledo, M. D., Crespo, M. B., Swensen, S. M. 1996When in doubt, put it in the Flacourtiaceae: molecular systematics of FlacourtiaceaeAmer. J. Bot.83146(Suppl.)CrossRefGoogle Scholar
  12. Chase, M. W., Zmarty, S., Lledo, M. D., Wurdack, K. J., Swensen, S. M., Fay, M. F. 2002When in doubt, put it in the Flacourtiaceae: A molecular phylogenetic analysis based on plastid rbcL sequencesKew Bull.57141181Google Scholar
  13. Crane, P. R., Herendeen, P., Friis, E. M. 2004Fossils and plant phylogenyAmer. J. Bot.9116831699Google Scholar
  14. Crepet, W. L., Nixon, K. C. 1996The fossil history of stamensD'Arcy, W. G.Keating, R. C. eds. The anther: form, function and phylogenyCambridge University PressCambridge2557Google Scholar
  15. Crepet, W. L., Nixon, K. C. 1998Fossil Clusiaceae from the Late Cretaceous (Turonian) of New Jersey and implications regarding the history of bee pollinationAmer. J. Bot.8511221133CrossRefGoogle Scholar
  16. Crepet, W. L., Nixon, K. C., Gandolfo, M. A. 2004Fossil evidence and phylogeny: the age of major angiosperm clades based on mesofossil and macrofossil evidence from Cretaceous depositsAmer. J. Bot.9116661682Google Scholar
  17. Cronquist, A. 1981An integrated system of classification of flowering plantsColumbia University PressNew YorkGoogle Scholar
  18. Davies, T. J., Barraclough, T. G., Chase, M. W., Soltis, P. S., Soltis, D. E., Savolainen, V. 2004Darwin's abominable mystery: insights from a supertree of the angiospermsProc. Natl. Acad. Sci.10119041909PubMedCrossRefGoogle Scholar
  19. Davis, C. C., Chase, M. W. 2004Elatinaceae are sister to Malpighiaceae; Peridiscaceae belong to SaxifragalesAmer. J. Bot.91262273Google Scholar
  20. Davis, C. C., Webb, C. O., Wurdack, K. J., Jaramillo, C. A., Donoghue, M. J. 2005Explosive radiation of Malpighiales supports a Mid-Cretaceous origin of modern tropical rain forestsAmer. Naturalist165E36E65CrossRefGoogle Scholar
  21. Endress, P. K. 2002Morphology and angiosperm systematics in the molecular eraBot. Rev.68545570CrossRefGoogle Scholar
  22. Endress, P. K., Friis, E. M. 1991 Archamamelis, hamamelidalean flowers from the Upper Cretaceous of SwedenPl. Syst. Evol.175101114CrossRefGoogle Scholar
  23. Endress, P. K., Igersheim, A. 2000Gynoecium structure and evolution in basal angiospermsInt. J. Pl. Sci.161S211S223CrossRefGoogle Scholar
  24. Endress, P. K., Matthews, M. L. 2006First steps towards a floral structural characterization of the major rosid subcladesPl. Syst. Evol.260223251Google Scholar
  25. Friis, E. M. 1983Upper Cretaceous (Senonian) floral structures of juglandalean affinity containing Normapolles pollenRev. Palaeobot. Palynol.39161188CrossRefGoogle Scholar
  26. Friis, E. M., Pedersen, K. R., Crane, P. R. 1992 Esgueiria gen. nov., fossil flowers with combretaceous features from the Late Cretaceous of PortugalBiol. Skrift.41145Google Scholar
  27. Friis, E. M., Pedersen, K. R., Crane, P. R. 2005When Earth started blooming: insights from the fossil recordCurr. Opin. Plant Biol.8512PubMedCrossRefGoogle Scholar
  28. Friis E. M., Pedersen K. R., Crane P. R. (2006a) Cretaceous angiosperm flowers: Innovation and evolution in plant reproduction. Palaegeogr. Palaeoclimatol. Palaeoecol.Google Scholar
  29. Friis, E. M., Schönenberger, J., Pedersen, K. R. 2003 Endressianthus a new Normapolles-producing plant genus of fagalean affinity from the Late Cretaceous of PortugalInt. J. Pl. Sci.164S201S223CrossRefGoogle Scholar
  30. Friis E. M., Schönenberger J., Pedersen K. R. (2006b) Normapolles plants: a prominent component of the rosid diversification in the Cretaceous. Pl. Syst. Evol. 260: 107–140.Google Scholar
  31. Gandolfo, M. A., Nixon, K. C., Crepet, W. L. 1998A new fossil flower from the Turonian of New Jersey: Dressianthia bicarpellata gen. et sp. nov. (Capparales)Amer. J. Bot.85964974CrossRefGoogle Scholar
  32. Hall, J. C., Sytsma, K. J., Iltis, H. H. 2002Phylogeny of Capparaceae and Brassicaceae based on chloroplast sequence dataAmer. J. Bot.8918261842Google Scholar
  33. Herendeen, P. S., Crane, P. R., Drinnan, A. N. 1995Fagaceous flowers, fruits, and cupules from the Campanian (Late Cretaceous) of Central Georgia, USAInt. J. Pl. Sci.15693116CrossRefGoogle Scholar
  34. Hermsen, E. J., Nixon, K. C., Crepet, W. L. 2006Fossil reproductive structures of Saxifragales and saxifrage evolutionPl. Syst. Evol.260141169Google Scholar
  35. Hermsen, E. J., Gandolfo, M. A., Nixon, K. C., Crepet, W. L. 2003 Divisestylus gen nov. (aff. Iteaceae), a fossil saxifrage from the Late Cretaceous of New Jersey, USAAmer. J. Bot.9013731388Google Scholar
  36. Hernández-Castillo, G. R., Cevallos-Ferriz, S. R. S. 1999Reproductive and vegetative organs with affinities to Haloragaceae from the Upper Cretaceous Huepac Chert Locality of Sonora, MexicoAmer. J. Bot.8617171734CrossRefGoogle Scholar
  37. Hilu, K. W., Borsch, T., Müller, K., Soltis, D. E., Soltis, P. S., Savolainen, V., Chase, M. W., Powell, M. P., Alice, L. A., Evans, R., Sauquet, H., Neinhuis, C., Slotta, T. A. B., Rohwer, J. G., Campbell, C. S., Chatrou, L. W. 2003Angiosperm phylogeny based on matK sequence informationAmer. J. Bot.9017581776Google Scholar
  38. Hufford, L. 1992Rosidae and their relationships to other nonmagnoliid dicotyledons: a phylogenetic analysis using morphological and chemical dataAnn. Missouri Bot. Gard.79218248CrossRefGoogle Scholar
  39. Igersheim, A., Endress, P. K. 1997Gynoecium diversity and systematics of the Magnoliales and winteroidsBot. J. Linn. Soc.124213271CrossRefGoogle Scholar
  40. Judd, W. S., Olmstead, R. G. 2004A survey of tricolpate (eudicot) phylogenetic relationshipsAmer. J. Bot.9116271644Google Scholar
  41. Knobloch, E., Mai, D. H. 1984Neue Gattungen nach Früchten und Samen aus dem Cenoman bis Maastricht (Kreide) von MitteleuropaFeddes Repert.95341Google Scholar
  42. Lindenhofer A., Weber A. (1999a) Polyandry in Rosaceae: evidence for a spiral origin of the androecium in Spiraeoideae. Bot. Jahrb. Syst. 121: 553–582.Google Scholar
  43. Lindenhofer A., Weber A. (1999b) The spiraeoid androecium of Pyroideae and Amygdaloideae (Rosaceae). Bot. Jahrb. Syst. 121: 583–605. Google Scholar
  44. Lindenhofer, A., Weber, A. 2000Structural and developmental diversity of the androecium of Rosoideae (Rosaceae)Bot. Jahrb. Syst.1226391Google Scholar
  45. Litt A., Stevenson D. W. (2003a) Floral development and morphology of Vochysiaceae. I. The structure of the gynoecium. Amer. J. Bot. 90: 1533–1547. Google Scholar
  46. Litt A., Stevenson D. W. (2003b) Floral development and morphology of Vochysiaceae. II. The position of the single fertile stamen. Amer. J. Bot. 90: 1548–1559.Google Scholar
  47. Magallón, S., Crane, P. R., Herendeen, P. S. 1999Phylogenetic pattern, diversity and diversification of eudicotsAnn. Missouri Bot. Gard.86297372CrossRefGoogle Scholar
  48. Magallón, S., Herendeen, P. S., Crane, P. R. 2001 Androdecidua endressii gen. et sp. nov., from the Late Cretaceous of Georgia (United States): Further floral diversity in Hamamelidoideae (Hamamelidaceae)Int. J. Pl. Sci.162963983CrossRefGoogle Scholar
  49. Magallón-Puebla, S., Herendeen, P. S., Endress, P. K. 1996 Allonia decandra: floral remains of the tribe Hamamelidae (Hamamelidaceae) from Campanian strata of southeastern USAPl. Syst. Evol.202177198CrossRefGoogle Scholar
  50. Matthews, M. L., Endress, P. K. 2002Comparative floral structure and systematics in Oxalidales (Oxalidaceae, Connaraceae, Cephalotaceae, Brunelliaceae, Cunoniaceae, Elaeocarpaceae, Tremandraceae)Bot. J. Linn. Soc.140321381CrossRefGoogle Scholar
  51. Matthews, M. L., Endress, P. K. 2004Comparative floral structure and systematics in Cucurbitales (Corynocarpaceae, Coriariaceae, Datiscaceae, Tetramelaceae, Begoniaceae, Cucurbitaceae, Anisophylleaceae)Bot. J. Linn. Soc.145129185CrossRefGoogle Scholar
  52. Matthews M. L., Endress P. K. (2005a) Comparative floral structure and systematics in Crossosomatales (Crossosomataceae, Stachyuraceae, Staphyleaceae, Aphloiaceae, Geissolomataceae, Ixerbaceae, Strasburgeriaceae). Bot. J. Linn. Soc. 147: 1–46.Google Scholar
  53. Matthews M. L., Endress P. K. (2005b) Comparative floral structure and systematics in Celastrales (Celastraceae, Parnassiaceae, Lepidobotryaceae). Bot. J. Linn. Soc. 149: 129–194.Google Scholar
  54. Matthews, M. L., Endress, P. K. 2006Floral structure and systematics in orders of rosids, including a survey of floral mucilage cellsPl. Syst. Evol.260199221Google Scholar
  55. Matthews, M. L., Endress, P. K., Schönenberger, J., Friis, E. M. 2001A comparison of floral structures of Anisophylleaceae and Cunoniaceae and the problem of their systematic positionAnn. Bot.88439455CrossRefGoogle Scholar
  56. Merino Sutter, D., Endress, P. K. 2003Structure of female flowers and cupules in Balanopaceae, an enigmatic rosid familyAnn. Bot.92459469CrossRefGoogle Scholar
  57. Nandi, O. I. 1998Ovule and seed anatomy of Cistaceae and related MalvanaePl. Syst. Evol.209239246CrossRefGoogle Scholar
  58. Nandi, O. I., Chase, M. W., Endress, P. K. 1998A combined cladistic analysis of angiosperms using rbcL and nonmolecular data setsAnn. Missouri Bot. Gard.85137212CrossRefGoogle Scholar
  59. Nickrent D. L., Blarer A., Qiu Y. L., Vidal-Russell R., Anderson F. E. (2004) Phylogenetic inference in Rafflesiales: the influence of rate heterogeneity and horizontal gene transfer. BMC Evol. Biol. 4: Art. No. 40. (on-line publication). Google Scholar
  60. Nickrent D. L., Der J. P., Anderson F. E. (2005) Discovery of the photosynthetic relatives of the Maltese mushroom‘‘ Cynomorium. BMC Evol. Biol. 5: Art. No. 38. (on-line publication).Google Scholar
  61. Olson, M. E. 2002Combining data from DNA sequences and morphology for a phylogeny of Moringaceae (Brassicales)Syst. Bot.275573Google Scholar
  62. Olson, M. E. 2003Ontogenetic origins of floral bilateral symmetry in Moringaceae (Brassicales)Amer. J. Bot.904971Google Scholar
  63. Oxelman, B., Yoshikawa, N., McConaughy, B. L., Luo, J., Denton, A. L., Hall, B. D. 2004 RPB2 gene phylogeny in flowering plants, with particular emphasis on asteridsMolec. Phylogenet Evol.32462479PubMedCrossRefGoogle Scholar
  64. Peng, Y. L., Chen, Z. D., Gong, X., Zhong, Y., Shi, S. H. 2003Phylogenetic position of Dipentodon sinicus: evidence from DNA sequences of chloroplast rbcL, nuclear ribosomal 18S, and mitochondrial matR genesBot. Bull. Acad. Sin.44217222Google Scholar
  65. Prenner, G. 2004The asymmetric androecium in Papilionoideae (Leguminosae): definition, occurrence, and possible systematic valueInt. J. Pl. Sci.165499510CrossRefGoogle Scholar
  66. Ronse De Craene L. P., Smets E. (1999a) Similarities in floral ontogeny and anatomy between the genera Francoa (Francoaceae) and Greyia (Greyiaceae). Int. J. Pl. Sci. 160: 377–393.Google Scholar
  67. Ronse De Craene L. P., Smets E. (1999b) The floral development and anatomy of Carica papaya (Caricaceae). Canad. J. Bot. 77: 582–598.Google Scholar
  68. Savolainen V., Chase M. W., Hoot S. B., Morton C. M., Soltis D. E., Bayer C., Fay M. F., de Bruijn A. Y., Sullivan S., Qiu Y.-L. (2000a) Phylogenetics of flowering plants based on combined analysis of plastid atpB and rbcL gene sequences. Syst. Biol. 49: 306–362.Google Scholar
  69. Savolainen V., Fay M. F., Albach D. C., Backlund A., van der Bank M., Cameron K. M., Johnson S. A., Lledó M. D., Pintaud J.-C., Powell M., Sheahan M. C., Soltis D. E., Soltis P. S., Weston P., Whitten W. M., Wurdack K. J., ChaseM. W. (2000b) Phylogeny of the eudicots: a nearly complete familial analysis based on rbcL gene sequences. Kew Bull. 55: 257–309. Google Scholar
  70. Schönenberger, J. 2005Rise from the ashes – the reconstruction of charcoal fossil flowersTrends Pl. Sci.10436443CrossRefGoogle Scholar
  71. Schönenberger, J., Conti, E. 2003Molecular phylogeny and floral evolution of Penaeaceae, Oliniaceae, Rhynchocalycaceae, and Alzateaceae (Myrtales)Amer. J. Bot.90293309Google Scholar
  72. Schönenberger J., Friis E. M., Matthews M. L., Endress P. K. (2001a) Cunoniaceae in the Cretaceous of Europe: evidence from fossil flowers. Ann. Bot. 88: 423–437.Google Scholar
  73. Schönenberger J., Pedersen K. R., Friis E. M. (2001b) Normapolles flowers of fagalean affinity from the Late Cretaceous of Portugal. Pl. Syst. Evol. 226: 205–230.Google Scholar
  74. Schwarzbach, A. E., Ricklefs, R. E. 2000Systematic affinities of Rhizophoraceae and Anisophylleaceae, and intergeneric relationships within Rhizophoraceae, based on chloroplast DNA, nuclear ribosomal DNA, and morphologyAmer. J. Bot.87547564CrossRefGoogle Scholar
  75. Sims, H. J., Herendeen, P. S., Crane, P. R. 1998New genus of fossil Fagaceae from the Santonian (Late Cretaceous) of central Georgia, USAInt. J. Pl. Sci.159391404CrossRefGoogle Scholar
  76. Sims, H. J., Herendeen, P. S., Lupia, R., Christopher, R. A., Crane, P. R. 1999Fossil flowers with Normapolles pollen from the Upper Cretaceous of southeastern North AmericaRev. Palaeobot. Palynol.106131151CrossRefGoogle Scholar
  77. Soltis, D. E., Senters, A. E., Zanis, M. J., Kim, S., Thompson, J. D., Soltis, P. S., Ronse Decraene, L. P., Endress, P. K., Farris, J. S. 2003Gunnerales are sister to other core eudicots: Implications for the evolution of pentameryAmer. J. Bot.90461470Google Scholar
  78. Soltis, D. E., Soltis, P. S., Chase, M. W., Mort, M. E., Albach, D. C., Zanis, M., Savolainen, V., Hahn, W. H., Hoot, S. B., Fay, M. F., Axtell, M., Swensen, S. M., Prince, L. M., Kress, W. J., Nixon, K. C., Farris, J. S. 2000Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequencesBot. J. Linn. Soc.133381461CrossRefGoogle Scholar
  79. Soltis D. E., Soltis P. S,. Endress P. K., Chase M. W. (2005) Phylogeny and evolution of angiosperms. Sinauer, Sunderland, Massachusetts.Google Scholar
  80. Soltis, D. E., Soltis, P. S., Nickrent, D. L., Johnson, L. A., Hahn, W. J., Hoot, S. B., Sweere, J. A., Kuzoff, R. K., Kron, K. A., Chase, M. W., Swenson, S. M., Zimmer, E. A., Chaw, S. M., Gillespie, L. J., Kress, W. J., Sytsma, K. J. 1997Angiosperm phylogeny inferred from 18S ribosomal DNA SequencesAnn. Missouri Bot. Gard.84149CrossRefGoogle Scholar
  81. Stevens P. F. (2001 onwards) Angiosperm Phylogeny Website. Version 6, May 2005. Scholar
  82. Sytsma K. J., Hall J. (2005) Rosid angiosperms: circumscription, issues, and systematic advances. XVII International Botanical Congress – Abstracts: 84–85. (abstract) Google Scholar
  83. Takahashi, M., Crane, P. R., Ando, H. 1999 Esgueiria futabensis sp. nov., a new angiosperm flower from the Upper Cretaceous (lower Coniacian) of northeastern Honshu, JapanPaleont. Res.38187Google Scholar
  84. Thorne, R. F. 1992Classification and geography of the flowering plantsBot. Rev.58225348Google Scholar
  85. Balthazar, M., Alverson, W. S., Schönenberger, J., Baum, D. A. 2004Comparative floral development and androecium structure in Malvoideae (Malvaceae s.l.)Int. J. Pl. Sci.165445473CrossRefGoogle Scholar
  86. Balthazar, M., Schönenberger, J., Alverson, W. S., Janka, H., Bayer, C., Baum, D. A. 2006Structure and evolution of the androecium in the Malvatheca clade (Malvaceae s.l.) and implications for Malvaceae and MalvalesPl. Syst. Evol.260171197Google Scholar
  87. Wikström, N., Savolainen, V., Chase, M. W. 2001Evolution of the angiosperms: calibrating the family treeProc. Roy. Soc. London B26822112220CrossRefGoogle Scholar
  88. Zhang L.-B., Simmons M. P. (2006) Phylogeny and delimitation of the Celastrales inferred from nuclear and plastid genes. Syst. Bot. (in press).Google Scholar
  89. Zhou, Z.-K., Crepet, W. L., Nixon, K. C. 2001The earliest fossil evidence of the Hamamelidaceae: Late Cretaceous (Turonian) inflorescences and fruits of AltingioideaeAmer. J. Bot.88753766Google Scholar

Copyright information

© Springer-Verlag Wien 2006

Authors and Affiliations

  1. 1.Department of BotanyStockholm UniversityStockholmSweden
  2. 2.Department of PalaeobotanySwedish Museum of Natural HistoryStockholmSweden

Personalised recommendations