Plant Systematics and Evolution

, Volume 258, Issue 3–4, pp 161–182 | Cite as

A phylogeographic study of the cosmopolitan genus Phragmites (Poaceae) based on AFLPs

  • C. Lambertini
  • M. H. G. Gustafsson
  • J. Frydenberg
  • J. Lissner
  • M. Speranza
  • H. Brix
Article

Abstract

Within the genus Phragmites (Poaceae), the species P. australis (the common reed) is virtually cosmopolitan, and shows considerable variation in ploidy level and morphology. Genetic variation in Phragmites was studied using AFLPs, and analysed with parsimony and distance methods. Groups of P. australis strongly supported in the analyses include one that comprises all South American clones, a distinct group from the US Gulf Coast, and a group of E. Asian and Australian octoploids. Among the other species, the paleotropical P. vallatoria is supported as monophyletic and most closely related to the paraphyletic P. mauritianus and to the Gulf Coast and S. American groups. The E. Asian species P. japonicus is closely related to a group of P. australis clones mostly from central North America. Tetraploidy predominates in the genus, and optimisation of chromosome numbers onto the phylogeny shows that higher ploidy levels have evolved many times.

Keywords

Phragmites common reed phylogeography AFLP polyploidy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Björk, S. 1967Ecologic investigations of Phragmites communis. Studies in theoretic and applied limnologyFolia Limnologica Scandinavica141248Google Scholar
  2. Brix, H. 1999Genetic diversity, ecophysiology and growth dynamics of reed (Phragmites australis)Aquat. Bot.64179184CrossRefGoogle Scholar
  3. Brix, H., Cizkova, H. 2001Introduction: Phragmites-dominated wetlands, their functions and sustainable useAquat. Bot.698788CrossRefGoogle Scholar
  4. Catling P. M., Mitrow G., Black L., Carbyn S. (2004) Status of the alien race of common reed (Phragmites australis) in the Canadian maritime provinces. Botanical Electronic News 324. http://www.ou.edu/cas/botany-micro/ben/ben324.html.Google Scholar
  5. Cizkova, H., Brix, H., Herben, T. 2000Ecology of Phragmites populations in the changing landscapeFolia Geobot.35351Google Scholar
  6. Clayton, W. D. 1967Studies in Gramineae: XIV. Arundineae. (Phragmites Adans.)Kew Bull.21113117Google Scholar
  7. Clevering, O. A., Lissner, J. 1999Taxonomy, chromosome numbers, clonal diversity and population dynamics of Phragmites australisAquat. Bot.64185208CrossRefGoogle Scholar
  8. Conert H. J. (1961) Die Systematik und Anatomie der Arundineae. Cramer, Frankfurt am Main. Google Scholar
  9. Connor, H. E., Dawson, M. I., Keating, R. D., Gill, L. S. 1998Chromosome number in Phragmites australis (Arundineae: Gramineae) in New ZealandNew Zealand J. Bot.36465469Google Scholar
  10. Davis, J. I. 1999

    Monophyly, populations and species

    Hollingsworth, P. M.Bateman, R. M.Gornall, A. J. eds. Molecular systematics and plant evolutionTaylor and FrancisLondon139170
    Google Scholar
  11. Den Hartog, C., Kvet, J., Sukopp, H. 1989Reed: a common species in declineAquat. Bot.3514CrossRefGoogle Scholar
  12. Desprès, L., Gielly, L., Redoutet, B., Taberlet, P. 2003Using AFLP to resolve phylogenetic relationships in a morphologically diversified plant species complex when nuclear and chloroplast sequences fail to reveal variabilityMolec. Phylogenet. Evol.27185196PubMedCrossRefGoogle Scholar
  13. Dodd, R. S., Afzal-Rafii, Z., Kashani, N., Budrick, J. 2002Land barriers and open oceans: effects on gene diversity and population structure in Avicennia germinans LMolec. Ecol.1113271338CrossRefGoogle Scholar
  14. Dykyjova, D., Pazourkova, Z. 1979A diploid form of Phragmites australis as a possible result of cytogenetical response to ecological stressFolia Geobot. Phytotax.141112Google Scholar
  15. Excoffier, L., Smouse, P. E., Quattro, J. M. 1992Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction dataGenetics131479491PubMedGoogle Scholar
  16. Farris, J. S., Albert, V. A., Källersjö, M., Lipscomb, D., Kluge, A. G. 1996Parsimony jackknifing outperforms neighbor-joiningCladistics1299124CrossRefGoogle Scholar
  17. Gorenflot, R. 1976Le complexe polyploide du Phragmites australis (Cav.) Trin. ex Steud. (=P. communis Trin.)Bull. Soc. Bot. Fr.,123261271Google Scholar
  18. Gorenflot, R. 1986Degrés et niveaux de la variation du nombre chromosomique chez Phragmites australis (Cav.) Trin. ex Steud. Veröff. GeobotInst. ETH, Stiftung Rübel, Zürich875365Google Scholar
  19. Gorenflot, R., Hubac, J. M., Jay, M. 1984Le complexe polyploide du Phragmites australis Cav (Trin) ex Steud. dans la région méditerranéenneWebbia38715721Google Scholar
  20. Gorenflot, R., Tahiri, H., Lavabre, P. 1990Anomalies méiotiques de la microsporogenèse dans un complex polyploide: Phragmites australis (Cav.)Trin. ex Steud. Rev. Cytol. Biol. Véget. – Bot.13153172Google Scholar
  21. GPWG (Grass Phylogeny Working Group) (2001) Phylogeny and subfamilial classification of the grasses (Poaceae). Ann. Missouri Bot. Gard. 88: 373–457.Google Scholar
  22. Grant, V. 1981Plant speciation, 2nd ednColumbia University PressNew YorkGoogle Scholar
  23. Greuter, W., Scholz, H. 1996Phragmites in Crete. Cenchrus frutescens and the nomenclature of the common reed (Gramineae)Taxon45521523CrossRefGoogle Scholar
  24. Hsiao, C., Jacobs, S. W. L., Barker, N. P., Chatterton, N. J. 1998A molecular phylogeny of the subfamily Arundinoideae (Poaceae) based on sequences of rDNAAustral. Syst. Bot.114152CrossRefGoogle Scholar
  25. Ishii, J., Kadono, Y. 2001Classification of two Phragmites species, P. australis and P. japonica, in the Lake Biwa - Yodo River System, JapanActa Phytotax. Geobot.51187201Google Scholar
  26. Kardolus, J. P., Eck, H. J., den Berg, R. G. 1998The potential of AFLPs in biosystematics: a first application in Solanum taxonomy (Solanaceae)Pl. Syst. Evol.21087103CrossRefGoogle Scholar
  27. Koppitz, H. 1999Analysis of genetic diversity among selected populations of Phragmites australis world-wideAquat. Bot.64209211CrossRefGoogle Scholar
  28. Kühl, H., Koppitz, H., Rolletschek, H., Kohl, J. 1999Clone Specific differences in a phragmites australis stand: I. Morphology, genetics and site descriptionAquat. Bot.64235246CrossRefGoogle Scholar
  29. Legendre P., Vaudor A. (1991) The R-package: Multidimensional analysis, spatial analysis. Département des Sciences Biologiques, Université de Montréal. Google Scholar
  30. Mantel, N. A. 1967The detection of disease clustering and a generalized regression approachCancer Res.27209220PubMedGoogle Scholar
  31. Mathews, S., Tsai, R. C., Kellogg, E. A. 2000Phylogenetic structure in the grass family (Poaceae): evidence from the nuclear phytochrome BAmer. J. Bot.8796107CrossRefGoogle Scholar
  32. Muellner, A. N., Tremetsberger, K., Stuessy, T., Baeza, C. M. 2005Pleistocene refugia and recolonization routes in the southern Andes: insights from Hypochaeris palustris (Asteraceae, Lactuceae)Molec. Ecol.14203212CrossRefGoogle Scholar
  33. Mutlu, B. 2002Phragmites frutescens H. Scholz (Gramineae), a new record for the flora of TurkeyHacettepe Journal of Biology and Chemistry312326Google Scholar
  34. Nei, M. 1978Estimation of average heterozygosity and genetic distance from a small number of individualsGenetics89583590Google Scholar
  35. Nei, M. 1987Molecular evolutionary geneticsColumbia University PressNew YorkGoogle Scholar
  36. Nei, M., Li, W. H. 1979Mathematical model for studying genetic variation in terms of restriction endonucleasesProc. Natl. Acad. Sci. U.S.A.7652695273PubMedGoogle Scholar
  37. Otto, S. P., Whitton, J. 2000Polyploid incidence and evolutionAnnual Rev. Genet.34401437CrossRefGoogle Scholar
  38. Pellegrin, D., Hauber, D. P. 1999Isozyme variation among populations of the clonal species Phragmites australis (Cav.) Trin. ex SteudelAquat. Bot.63241259CrossRefGoogle Scholar
  39. Robichaud L., Catling P. M. (2003) Potential value of first glume length in differentiating native and alien races of common reed, Phragmites australis. Botanical Electronic News, 310. http:// www.ou.edu/cas/botany-micro/ben/ben310.html.Google Scholar
  40. Saltonstall, K. 2002Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North AmericaProc. Natl. Acad. Sci. U.S.A.9924452449PubMedCrossRefGoogle Scholar
  41. Saltonstall, K. 2003aMicrosatellite variation within and among North American lineages of Phragmites australisMolec. Ecol.1216891702CrossRefGoogle Scholar
  42. Saltonstall K. (2003b) A rapid method for identifying the origin of North American Phragmites populations using RFLP analysis. Wetlands 23: 1043–1047.Google Scholar
  43. Saltonstall, K., Peterson, P. M., Soreng, R. J. 2004Recognition of Phragmites australis subsp.americanus (Poaceae: Arundinoideae) in North America: evidence from morphological and genetic analysesSida21683692Google Scholar
  44. Scholz, H., Böhling, N. 2000Phragmites frutescens (Gramineae) re-visited. The discovery of an overlooked, woody grass in Greece, especially CreteWilldenowia30251261Google Scholar
  45. Shouliang C., Phillips S. M. (2004) Tribe 16. Arundineae. Flora of China [draft]. http://flora.huh.harvard.edu/china/mss/volume22/16_Arundineae.htm. Google Scholar
  46. Soltis, D. E., Soltis, P. S. 1999Polyploidy: recurrent formation and genome evolutionTree14348352PubMedGoogle Scholar
  47. Stebbins G. L. (1971) Chromosomal evolution in higher plants. Edward Arnold, London, 216 pp.Google Scholar
  48. Swofford, D. L. 2002PAUP. Phylogenetic Analysis Using Parsimony (and other methods). Version 4Sinauer AssociatesSunderland, MassachusettsGoogle Scholar
  49. Tsvelev, N. N. 1983Grasses of the Soviet Union. Part IIAmerind PublishingNew DelhiGoogle Scholar
  50. Veldkamp, J. F. 1992Miscellaneous notes on Southeast Asian GramineaeBlumea37231234Google Scholar
  51. Vos, P., Hogers, R., Bleeker, M., Reijans, M., Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M., Zabeau, M. 1995AFLP: a new technique for DNA fingerprintingNucl. Acids Res.2344074414PubMedGoogle Scholar
  52. Weir, B. S., Cockerham, C. C. 1984Estimating F-statistics for the analysis of population structureEvolution3813581370CrossRefGoogle Scholar
  53. Zerega, N. J. C., Ragone, D., Motley, T. J. 2004Complex origins of breadfruit (Artocarpus altilis, Moraceae): implications for human migrations in OceaniaAmer. J. Bot.91760766Google Scholar
  54. Zong W., Chen R., Taniguchi K., Kondo K. (1991) A chromosome study in intraspecific ployploidy of Phragmites australis and its related species. Kromosomo 63–64: 2168–2172. Google Scholar

Copyright information

© Springer-Verlag Wien 2006

Authors and Affiliations

  • C. Lambertini
    • 1
    • 4
  • M. H. G. Gustafsson
    • 1
    • 5
  • J. Frydenberg
    • 1
    • 5
  • J. Lissner
    • 2
  • M. Speranza
    • 3
  • H. Brix
    • 1
    • 4
  1. 1.Department of Biological SciencesUniversity of AarhusÅrhusDenmark
  2. 2.Department of Environment and InfrastructureRingkøbing CountyRingkøbingDenmark
  3. 3.Department of Agro-environmental Sciences and TechnologiesUniversity of BolognaBolognaItaly
  4. 4.Department of Biological SciencesUniversity of AarhusÅrhus CDenmark
  5. 5.Department of Biological SciencesUniversity of AarhusÅrhus CDenmark

Personalised recommendations