Plant Systematics and Evolution

, Volume 257, Issue 3–4, pp 189–203 | Cite as

Phylogenetics of Quiinaceae (Malpighiales): evidence from trnL-trnF sequence data and morphology

  • J. V. Schneider
  • U. Swenson
  • R. Samuel
  • T. Stuessy
  • G. Zizka


We present the first parsimony analyses of the Neotropical family Quiinaceae using nucleotide sequence data from the non-coding trnL intron and trnL-trnF intergenic spacer of the plastid genome, analysed separately as well as in combination with morphology. Both molecules and combined data recover Quiinaceae as a well-supported monophyletic group. Quiinaceae form a polytomy together with their potential sister groups, the monophyletic Ochnaceae s.str. and the monotypic Medusagynaceae from the Seychelles in the Indian Ocean. Froesia is resolved as sister to the rest of the family. Other members of the family, Lacunaria, Quiina, and Touroulia, are all recovered as monophyletic despite the inclusion of strikingly distinctive representatives (L. oppositifolia and Q. pteridophylla). Relationships among the last three genera, however, are yet uncertain. Optimising characters of breeding system onto the molecular phylogeny reveals that bisexual flowers (Froesia) are the ancestral state in Quiinaceae, whereas androdioecy (Quiina, Touroulia) and dioecy (Lacunaria) are derived breeding systems.


Androdioecy dioecy Froesia Lacunaria Medusagynaceae Ochnaceae Quiina Touroulia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. APG,  1998An ordinal classification for the families of flowering plantsAnn. Missouri Bot. Gard85531553Google Scholar
  2. APG,  2003An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plantsBot. J. Linn. Soc141399436Google Scholar
  3. Bawa, K. S. 1980Evolution of dioecy in flowering plantsAnnual Rev. Ecol. Syst111539CrossRefGoogle Scholar
  4. Bremer, K. 1988The limits of amino acid sequence data in angiosperm phylogenetic reconstructionEvolution42795803Google Scholar
  5. Chase, M. W., Fay, M. F., Savolainen, V. 2000Higher-level classification in the angiosperms: new insights from the perspective of DNA sequence dataTaxon49685704Google Scholar
  6. Cunningham, C. W. 1997Is congruence between data partitions a reliable predictor of phylogenetic accuracy? Empirically testing an iterative procedure for choosing among phylogenetic methodsSyst. Biol46464478PubMedGoogle Scholar
  7. Davis, C. C., Chase, M. W. 2004Elatinaceae are sister to Malpighiaceae; Peridiscaceae belong to SaxifragalesAmer. J. Bot91262273Google Scholar
  8. Davis, C. C., Wurdack, K. J. 2004Host-to-parasite gene transfer in flowering plants: phylogenetic evidence from MalpighialesScience305676378PubMedGoogle Scholar
  9. Doyle, J. J., Doyle, J. L. 1987A rapid DNA isolation procedure for small quantities of fresh leaf tissuePhytochem. Bull.191115Google Scholar
  10. Dunthorn, M. 2004Cryptic dioecy in Mammea (Clusiaceae)Pl. Syst. Evol249191196CrossRefGoogle Scholar
  11. Farris, J. S. 1997Combinability vs congruenceCladistics13170Google Scholar
  12. Farris, J. S., Albert, V. A., Källersjö, M., Lipscomb, D., Kluge, A. G. 1996Parsimony jackknifing outperforms neighbor-joiningCladistics1199124Google Scholar
  13. Farris, J. S., Källersjö, M., Kluge, A. G., Bult, C. 1994Testing significance of incongruenceCladistics10315319Google Scholar
  14. Fay, M. F., Swensen, S. M., Chase, M. W. 1997Taxonomic affinities of Medusagyne oppositifolia(Medusagynaceae)Kew Bull52111120Google Scholar
  15. Fitch, W. M. 1971Towards defining the course of evolution: minimum changes for a specific tree topologySyst. Zool20406416Google Scholar
  16. Goldman, N., Anderson, J. P., Rodrigo, A. G. 2000Likelihood-based tests of topologies in phylogeneticsSyst. Biol49652670PubMedGoogle Scholar
  17. Gottwald, H., Parameswaran, N. 1967Beiträge zur Anatomie und Systematik der QuiinaceaeBot. Jahrb. Syst87361381Google Scholar
  18. Hipp, A. L., Hall, J. C., Sytsma, K. J. 2004Congruence versus phylogenetic accuracy: revisiting the incongruence length difference testSyst. Biol538189CrossRefPubMedGoogle Scholar
  19. Huelsenbeck, J. P., Bull, J. J., Cunningham, C. W. 1996Combining data in phylogenetic analysisTrends Ecol. Evol11152158Google Scholar
  20. Källersjö, M., Farris, J. S., Chase, M. W., Bremer, B., Fay, M. F., Humphries, J., Petersen, G., Seberg, O., Bremer, K. 1998Simultaneous parsimony jackknife analysis of 2538 rbcL DNA sequences reveals support for major clades of green plants, land plants, seed plants and flowering plantsPl. Syst. Evol213259287CrossRefGoogle Scholar
  21. Kanis, A. 1968A revision of the Ochnaceae of the Indo-Pacific areaBlumea16182Google Scholar
  22. Kelchner, S. A. 2002Group II introns as phylogenetic tools: structure, function, and evolutionary constraintsAmer. J. Bot8916511669Google Scholar
  23. Kelchner, S. A., Clark, L. G. 1997Molecular evolution and phylogenetic utility of the chloroplast rpl16 intron in Chusquea and the Bambusoideae (Poaceae)Molec. Phylogenet. Evol8385397PubMedGoogle Scholar
  24. Litt, A., Chase, M. W. 1999The systematic position of Euphronia with comments on the position of Balanops: an analysis based on rbcL sequence dataSyst. Bot23401409Google Scholar
  25. Löhne, C., Borsch, T. 2005Molecular evolution and phylogenetic utility of the petD group II intron: a case study in basal angiospermsMolec. Biol. Evol22317332PubMedGoogle Scholar
  26. Loockerman, D. J., Jansen, R. K. 1996The use of herbarium material for DNA studiesStuessy, T. F.Sohmer, S. H. eds. Sampling the Green WorldColumbia Univ. PressNew YorkGoogle Scholar
  27. Maddison D. R., Maddison W. P. (2003) MacClade: analysis of phylogeny and character evolution, version 4.06. Sinauer Associates, Sunderland. Google Scholar
  28. Nandi, O. I., Chase, M. W., Endress, P. K. 1998A combined cladistic analysis of angiosperms using rbcL and non-molecular data setsAnn. Missouri Bot. Gard85137212Google Scholar
  29. Pannell, J. R. 2002The evolution and maintenance of androdioecyAnnual Rev. Ecol. Syst33397425CrossRefGoogle Scholar
  30. Petersen, G., Seberg, O. 1998Molecules vs. morphologyKarp, A.Isaac, P. G.Ingram, D. S. eds. Molecular tools for screening biodiversityChapman & HallLondonGoogle Scholar
  31. Pires, J. M. 1950Contribuição para a flora amazônicaBol. Técn. Inst. Agron. N204151Google Scholar
  32. Richards, A. J. 1997Plant breeding systems 2nd ednChapman & HallLondonGoogle Scholar
  33. Rydin, C., Källersjö, M., Friis, E. M. 2002Seed plant relationships and the systematic position of Gnetales based on nuclear and chloroplast DNA: conflicting data, rooting problems, and the monophyly of conifersInt. J. Plant Sci163197214CrossRefGoogle Scholar
  34. Savolainen, V., Fay, M. F., Albach, D. C., Backlund, A., Bank, M., Cameron, K. M., Johnson, S. A., Lledó, M. D., Pintaud, J.-C., Powell, M., Sheahan, M. C., Soltis, D. E., Soltis, P. S., Weston, P., Whitten, W. M., Wurdack, K. J., Chase, M. W. 2000Phylogeny of the eudicots: a nearly complete familial analysis based on rbcL gene sequencesKew Bull55257309Google Scholar
  35. Schneider, J. V., Swenson, U., Zizka, G. 2002Phylogenetic reconstruction of the neotropical family Quiinaceae (Malpighiales) based on morphology with remarks on the evolution of an androdioecious sex distributionAnn. Missouri Bot. Gard896476Google Scholar
  36. Schneider, J. V., Zizka, G. 1997Two new species of Quiinaceae (Quiina, Froesia) from the Venezuelan Guayana and some remarks on the genus Froesia PiresNovon7406412Google Scholar
  37. Shimodaira, H. 2002An approximately unbiased test of phylogenetic tree selectionSyst. Biol51492508CrossRefPubMedGoogle Scholar
  38. Simmons, M. P., Ochoterena, H. 2000Gaps as characters in sequence-based phylogenetic analysesSyst. Biol49369381PubMedGoogle Scholar
  39. Soltis, D. E., Hibsch-Jetter, C., Soltis, P. S., Chase, M. W., Farris, J. S. 1997Molecular phylogenetic relationships among angiosperms: an overview based on rbcL and 18S rDNA sequencesIwatsuki, K.Raven, P. H. eds. Evolution and diversification of land plantsSpringerTokyoGoogle Scholar
  40. Swensen, S. M., Luthis, J. N., Rieseberg, H. L. 1998Datiscaceae revisited: monophyly and the sequence of breeding system evolutionSyst. Bot23157169Google Scholar
  41. Swofford D. L. (2002) PAUP*: Phylogenetic analysis using Parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  42. Taberlet, P., Gielly, L., Patou, G., Bouvet, J. 1991Universal primers for amplification of three non-coding regions of chloroplast DNAPl. Molec. Biol1711051109Google Scholar
  43. Templeton, A. R. 1983Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and the apesEvolution37221244Google Scholar
  44. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., Higgins, D. G. 1997The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis toolsNucl. Acids Res2448764882Google Scholar
  45. Westergaard, M. 1958The mechanism of sex determination in dioecious flowering plantsAdvances Genet9217281Google Scholar
  46. Zizka, G., Schneider, J. V. 1999The genus TourouliaAubl. (Quiinaceae)Willdenowia2918Google Scholar
  47. Zizka, G., Schneider, J. V. 2004QuiinaceaeSmith, N. P.Mori, S. A.Henderson, A.Stevenson, D. W.Heald, S. V. eds. Flowering plants of the neotropicsPrinceton University PressNew JerseyGoogle Scholar

Copyright information

© Springer-Verlag Wien 2006

Authors and Affiliations

  • J. V. Schneider
    • 1
    • 4
  • U. Swenson
    • 2
  • R. Samuel
    • 3
  • T. Stuessy
    • 3
  • G. Zizka
    • 4
  1. 1.Department of Systematic Botany, Biology IUniversity of LeipzigLeipzigGermany
  2. 2.Department of Phanerogamic BotanySwedish Museum of Natural HistoryStockholmSweden
  3. 3.Department of Higher Plant Systematics and Evolution, Institute of BotanyUniversity of ViennaViennaAustria
  4. 4.Department of Botany and Molecular EvolutionResearch Institute Senckenberg and Johann Wolfgang Goethe-UniversityFrankfurt am MainGermany

Personalised recommendations