Plant Systematics and Evolution

, Volume 257, Issue 1–2, pp 95–117 | Cite as

Genome size in Bulgarian Centaurea s.l. (Asteraceae)

  • S. Bancheva
  • J. Greilhuber


Thirty-nine species and subspecies of the genera Centaurea, Colymbada, Psephellus and Cyanus (all included in Centaurea s.l.) including many rare and endemic taxa of preponderantly Bulgarian distribution have been investigated with Feulgen DNA image densitometry for holoploid and monoploid genome size (C- and Cx-values). Cyanus varies gradually 2.17-fold between 0.74 pg and 1.56 pg (1Cx). In the remaining taxa two major genome size groups are found, which differ about 1.8-fold in Cx-value. Low values occur in Centaurea subgenera Acrolophus, Solstitiaria, Phalolepis (0.77 pg to 0.90 pg, 1Cx) and Jacea (0.95 pg to 1.09 pg, 1Cx), high values in the genera Colymbada (1.65 pg to 1.93 pg, 1Cx) and Psephellus (1.79 pg, 1Cx, in P. marschallianus). Cx-values support a distinction of Colymbada from Centaurea. Genome size variation is discussed with regard to phylogeny, life form (annual versus perennial), polyploidy, chromosome basic numbers, altitude of occurrence and climate, endemism, and rarity.


Centaurea Colymbada Cyanus Psephellus genome size C-value nucleotype Feulgen densitometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albach, D. C., Greilhuber, J. 2004Genome size variation and evolution in Veronica Ann. Bot94897911CrossRefPubMedGoogle Scholar
  2. Bachmann, K. 1972Nuclear DNA and developmental rate in frogsQuart. J. Florida Acad. Sci35225231Google Scholar
  3. Bancheva, S., Raimondo, F. 2003Biosystematic studies of seven Balkan species from genus Cyanus (Compositae)Bocconea16507527Google Scholar
  4. Barow, M., Meister, A. 2003Endopolyploidy in seed plants is differently correlated to systematics, organ, life strategy and genome sizePl. Cell Environ26571584CrossRefGoogle Scholar
  5. Bennett, M. D. 1972Nuclear DNA content and minimum generation time in herbaceous plantsProc. Roy. Soc. London, Ser. B, Biol. Sci181109135Google Scholar
  6. Bennett, M. D. 1987Variation in genomic form in plants and its ecological implicationsNew Phytol106177200Google Scholar
  7. Bennett, M. D. 1998Plant genome values: How much do we know?Proc. Natl. Acad. Sci. USA9520012016CrossRefGoogle Scholar
  8. Bennett, M. D., Leitch, I. J. 1995Nuclear DNA amounts in angiospermsAnn. Bot76113176CrossRefGoogle Scholar
  9. Bennett M. D., Leitch I. J. (2004) Angiosperm DNA C-values database (release 5.0, Dec. 2004) http: // Scholar
  10. Bennett, M. D., Leitch, I. J. 2005aGenome size evolution in plantsGregory, T. R. eds. The evolution of the genomeElsevier Academic PressAmsterdam New York89162Google Scholar
  11. Bennett, M. D., Leitch, I. J. 2005bNuclear DNA amounts in angiosperms: Progress, problems and prospectsAnn. Bot954590Google Scholar
  12. Bennett, M. D., Leitch, I. J., Hanson, L. 1998DNA amounts in two samples of angiosperm weedsAnn. Bot82121134Google Scholar
  13. Bennett, M. D., Bhandol, P., Leitch, I. J. 2000Nuclear DNA amounts in angiosperms and their modern uses - 807 new estimatesAnn. Bot86859909CrossRefGoogle Scholar
  14. Bennett M. D., Leitch I. J., Price H. J., Johnston J. S. (2003) Comparisons with Caenorhabditis (100 Mb) and Drosophila (175 Mb) using flow cytometry show genome size in Arabidopsis to be 157 Mb and thus 25 % larger than the Arabidopsis genome initiative estimate of 125 Mb. Ann. Bot. 91: 547–557.Google Scholar
  15. Bondev, I. 1991The vegetation of Bulgaria. Map 1:600000 with explanatory text St. Kl. Ohridski University PressSofia183Google Scholar
  16. Bottini, M. C. J., Greizerstein, E. J., Aulicino, M. B., Poggio, L. 2000Relationships among genome size, environmental conditions and geographical distribution in natural populations of NW Patagonian species of Berberis L. (Berberidaceae)Ann. Bot86565573CrossRefGoogle Scholar
  17. Bremer, K. 1994Asteraceae – cladistics and classificationTimber PressPortland, ORGoogle Scholar
  18. Crosa O., Bancheva S. (2005) Centaurea debeauxii (Asteraceae) una especie europea, nueva para Uruguay. Agrociencia. (in press).Google Scholar
  19. Dimitrova, D., Ebert, I., Greilhuber, J., Kozhuharov, S. 1999Karyotype constancy and genome size variation in Bulgarian Crepis foetida s. l. (Asteraceae)Pl. Syst. Evol217245257CrossRefGoogle Scholar
  20. Dittrich, M. 1977Cynareae – systematic reviewHeywood, V. H.Harborne, J. B.Turner, B. L. eds. The biology and chemistry of the CompositaeAcademic PressLondon New York San Francisco9991015Google Scholar
  21. Dolezel, J., Bartos, J., Voglmayr, H., Greilhuber, J. 2003Nuclear DNA content and genome size of trout and humanCytometry51A127128CrossRefGoogle Scholar
  22. Dostál, J. 1976Genus Centaurea LTutin, T. G.Heywood, V. H.Burges, N. A.Moore, D. M.Valentine, D. H.Walters, S. M.Webb, D. A. eds. Flora Europaea, vol. 4Cambridge University PressLondon New York Melbourne254301Google Scholar
  23. Font, M., Garnatje, T., Garcia-Jacas, N., Susanna, A. 2002Delineation and phylogeny of Centaurea sect. Acrocentron based on DNA sequences: a restoration of the genus Crocodylium and indirect evidence of introgressionPl. Syst. Evol2341526CrossRefGoogle Scholar
  24. Garcia-Jacas, N., Susanna, A. 1992Karyological notes on Centaurea sect. Acrocentron (Asteraceae)Pl. Syst. Evol179118Google Scholar
  25. Garcia-Jacas, N., Susanna, A., Ilarsan, R. 1996Aneuploidy in Centaureinae (Compositae): is n = 7 the end of the seriesTaxon453942Google Scholar
  26. Garcia-Jacas, N., Susanna, A., Mozaffarian, R., Ilarsan, R. 2000The natural delimitation of Centaurea (Asteraceae: Cardueae): ITS sequence analysis of the Centaurea jacea groupPl. Syst. Evol223185199CrossRefGoogle Scholar
  27. Garcia-Jacas, N., Susanna, A., Garnatje, T., Vilatersana, R. 2001Generic delimitation and phylogeny of the subtribe Centaureinae (Asteraceae): a combined nuclear and chloroplast DNA analysisAnn. Bot87503515CrossRefGoogle Scholar
  28. Govindaraju, D. R., Cullis, C. A. 1991Modulation of genome size in plants: the influence of breeding systems and neighbourhood sizeEvol. Trends Plants54351Google Scholar
  29. Gregory, T. R. 2003Variation across amphibian species in the size of the nuclear genome supports a pluralistic, hierarchical approach to the C-value enigmaBiol. J. Linn. Soc79329339CrossRefGoogle Scholar
  30. Gregory, T. R. 2005Genome size evolution in animalsGregory, T. R. eds. The evolution of the genomeElsevier Academic PressAmsterdam New York387Google Scholar
  31. Greilhuber, J. 1995Chromosomes of the monocotyledons (general aspects)Rudall, P. J.Cribb, P. J.Cutler, D. F.Humphries, C. J. eds. Monocotyledons: systematics and evolutionRoyal Botanic GardensKew379414Google Scholar
  32. Greilhuber, J., Ebert, I. 1994Genome size variation in Pisum sativum Genome37646655PubMedGoogle Scholar
  33. Greilhuber, J., Ehrendorfer, F. 1988Karyological approaches to plant taxonomyISI Atlas of Science: Plants & Animals1289297Google Scholar
  34. Greilhuber, J., Temsch, E. M. 2001Feulgen densitometry: Some observations relevant to best practice in quantitative nuclear DNA content determinationActa Bot. Croat60285298Google Scholar
  35. Greilhuber, J., Dolezel, J., Lysàk, M., Bennett, M. D. 2005The origin, evolution, and proposed stabilisation of the terms ,genome size' and, C-value` to describe nuclear DNA contentsAnn. Bot95255260PubMedGoogle Scholar
  36. Greuter, W. 2003The Euro+Med treatment of Cardueae (Compositae) – generic concepts and required new namesWilldenowia334961Google Scholar
  37. Greuter, W., Wagenitz, G., Agababian, M., Hellwig, F. H. 2001Proposal to conserve the name Centaurea (Compositae) with a conserved typeTaxon5012011205Google Scholar
  38. Grime, J. P. 1983Prediction of weed and crop response to climate based upon measurements of nuclear DNA contentAspects Appl. Biol48798Google Scholar
  39. Grime, J. P., Mowforth, M. A. 1982Variation in genome size: an ecological interpretationNature299151153CrossRefGoogle Scholar
  40. Hanson, L., McMahon, K. A., Johnson, M. A. T., Bennett, M. D. 2001First nuclear DNA C-values for another 25 angiosperm familiesAnn. Bot88851858CrossRefGoogle Scholar
  41. Hellwig, F. H. 2004Centaureinae (Asteraceae) in the Mediterranean — history of ecogeographical radiationPl. Syst. Evol246137162Google Scholar
  42. Knight, C. A., Ackerly, D. D. 2002Variation in nuclear DNA content across environmental gradients: a quantile regression analysisEcology Lett56676CrossRefGoogle Scholar
  43. Knight, C. A., Molinari, N. A., Petrov, D. A. 2005The large genome constraint hypothesis: evolution, ecology and phenotypeAnn. Bot95177190CrossRefPubMedGoogle Scholar
  44. Kozhuharov, S. eds. 1992A field guide to the Bulgarian vascular plantsBulgarian Academy of SciencesSofiaGoogle Scholar
  45. Krisai, R., Greilhuber, J. 1997 Cochlearia pyrenaica DC., das Löffelkraut, in Oberösterreich (mit Anmerkungen zur Karyologie und zur Genomgröße)Beitr. Naturk. Oberösterreichs5151160Google Scholar
  46. Labani, R. M., Elkington, T. T. 1987Nuclear DNA variation in the genus Allium L. (Liliaceae)Heredity59119128Google Scholar
  47. Laurie, D. A., Bennett, M. D. 1985Nuclear DNA content in the genera Zea and Sorghum. Intergeneric, interspecific and intraspecific variationHeredity55307313Google Scholar
  48. Leitch, I., Bennett, M. D. 2004Genome downsizing in polyploid plantsBiol. J. Linn. Soc82651663CrossRefGoogle Scholar
  49. Lysàk, M., Rostková, A., Dixon, J. M., Rossi, G., Dolezel, J. 2000Limited genome size variation in Sesleria albicans Ann. Bot86399403Google Scholar
  50. Murray, B. G. 2005When does intraspecific C-value variation become taxonomically significant?Ann. Bot95119125CrossRefPubMedGoogle Scholar
  51. Nagl, W. 1976DNA endoreduplication and polyteny understood as evolutionary strategiesNature261614615CrossRefPubMedGoogle Scholar
  52. Rayburn, A. L., Auger, J. A. 1990Genome size variation in Zea mays ssp. mays adapted to different altitudesTheor. Appl. Genet79470474CrossRefGoogle Scholar
  53. Rayburn, A. L., Price, H. J., Smith, J. D., Gold, J. R. 1985C-band heterochromatin and DNA content in Zea mays Amer. J. Bot7216101617Google Scholar
  54. Reeves, G., Francis, D., Davies, M. S., Rogers, H. J., Hodkinson, T. R. 1998Genome size is negatively correlated with altitude in natural populations of Dactylis glomerata Ann. Bot8299105Google Scholar
  55. Routsi, E., Georgiadis, T. 1999Cytogeographical study of Centaurea L. sect. Acrocentron (Cass.) DC. (Asteraceae) in GreeceBot. Helv109139151Google Scholar
  56. Schmuths, H., Meister, A., Horres, R., Bachmann, K. 2004Genome size variation among accessions of Arabidopsis thaliana Ann. Bot93317321CrossRefPubMedGoogle Scholar
  57. Siljak-Yakovlev, S., Solic, M. E., Catrice, O., Brown, S. C., Papes, D. 2005Nuclear DNA content and chromosome number in some diploid and tetraploid Centaurea (Asteraceae: Cardueae) from the Dalmatia regionPl. Biol7397404Google Scholar
  58. Sparrow, A. H., Miksche, J. P. 1961Correlation of nuclear volume and DNA content with higher plant tolerance to chronic radiationScience134282283PubMedGoogle Scholar
  59. Suda, J., Kyncl, T., Freiová, R. 2003Nuclear DNA amounts in Macaronesian angiospermsAnn. Bot92153164CrossRefPubMedGoogle Scholar
  60. Suda, J., Kyncl, T., Jarolímová, V. 2005Genome size in Macaronesian angiosperms: Forty percent of the Canarian endemic flora completedPl. Syst. Evol252215238CrossRefGoogle Scholar
  61. Susanna, A., Garcia-Jacas, N., Soltis, D. E., Soltis, P. S. 1995Phylogenetic relationship in tribe Cardueae (Asteraceae) based on ITS sequencesAmer. J. Bot8210561068Google Scholar
  62. Temsch, E. M., Greilhuber, J. 2001Genome size in Arachis duranensis: a critical studyGenome44826830CrossRefPubMedGoogle Scholar
  63. Trivers, R., Burt, A., Palestis, B. G. 2004B chromosomes and genome size in flowering plantsGenome4718CrossRefPubMedGoogle Scholar
  64. Van't, Hof J., Sparrow, A. K. 1963A relationship between DNA content, nuclear volume, and minimum mitotic cycle timeProc. Natl. Acad. Sci. USA49897902Google Scholar
  65. Velchev, V. eds. 1992Atlas of the endemic plants in BulgariaBulgarian Academy of SciencesSofiaGoogle Scholar
  66. Vidic T., Greilhuber J., Vilhar B. (2003) Genome size is associated with differential survival of plant species. In: Plant Genome Size Discussion Meeting. Jodrell Laboratory, Royal Botanic Gardens, Kew, 11th and 12th September 2003, Abstracts, p. 31.Google Scholar
  67. Vilhar, B., Greilhuber, J., Dolenc, Koce J., Temsch, E. M., Dermastia, M. 2001Plant genome size measurement with DNA image cytometryAnn. Bot87719728CrossRefGoogle Scholar
  68. Vilhar, B., Vidic, T, Jogan, N., Dermastia, M. 2002Genome size and the nucleolar number as estimators of ploidy level in Dactylis glomerata in the Slovenian AlpsPl. Syst. Evol234113CrossRefGoogle Scholar
  69. Vinogradov, A. E. 2003Selfish DNA is maladaptive: evidence from the plant Red ListTrends Genet19609614CrossRefPubMedGoogle Scholar
  70. Wagenitz, G. 1955Pollenmorphologie und Systematik in der Gattung Centaurea L. s.lFlora142213279Google Scholar
  71. Wagenitz G. (1975) Floristic connection between the Balkan peninsula and the Near East as exemplified by the genus Centaurea L. In: Problems of the Balkan flora and vegetation. Sofia, pp. 223–228.Google Scholar
  72. Wagenitz, G. 1987Compositae II: MatricariaHieracium. Gustav Hegi, Illustrierte Flora von Mitteleuropa, 2nd. edn, vol. VI/4PareyBerlin HamburgGoogle Scholar
  73. Wagenitz G., Hellwig F. H. (1996) Evolution of characters and phylogeny of Centaureinae. In: Hind D. J. N., Beentje H. J. (eds.) Compositae. Systematics. Proceedings of the International Compositae Conference, Kew, 1994, vol. 1. Royal Botanic Gardens, Kew, pp. 491–510.Google Scholar

Copyright information

© Springer-Verlag Wien 2005

Authors and Affiliations

  1. 1.Institute of BotanyBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Department of Systematic and Evolutionary Botany, Faculty of Life SciencesUniversity of ViennaViennaAustria

Personalised recommendations