Plant Systematics and Evolution

, Volume 257, Issue 3–4, pp 251–260 | Cite as

Genome size for the species of Nerine Herb. (Amaryllidaceae) and its evident correlation with growth cycle, leaf width and other morphological characters

Article

Abstract

Nuclear DNA content (2C) is used as a new criterion to investigate nearly all species of the genus Nerine Herb. The species have the same chromosome number (2n = 2x = 22), with the exception of three triploid plants found. The nuclear DNA content of the diploids, as measured by flow cytometry with propidium iodide, is demonstrated to range from 18.0–35.3 pg. This implies that the largest genome contains roughly 2 × 1010 more base pairs than the smallest. The species, arranged according to increasing genome size, fell apart in three groups if growth cycle and leaf width were also considered. A narrow-leafed, evergreen group with a DNA content between 18.0 and 24.6 pg contains thirteen species, a broad-leaved winter growing group with four species has a DNA content from 25.3–26.2 pg and a broad-leafed summer growing group has a DNA content of 26.8–35.3 pg and contains six species. If the presence of filament appendages and hairiness of the pedicels were also considered, the thirteen evergreen species could be further divided into a group without filament appendages or hairy pedicels with a DNA content of 18.0–18.7 pg. A second group without filament appendages but with hairy pedicels had a DNA content of 19.7–22.3 pg. And a third group with both filament appendages and hairy pedicels had a DNA content of 22.0–24.6 pg. The exception is N. marincowitzii that, despite a low DNA content and narrow leaves is summer growing. The broad-leafed group is further characterised by the absence of filament appendages and the absence of strongly hairy pedicels. The exception here is N. pusilla that, despite a high DNA content, has narrow leaves and minutely hairy pedicels. Nuclear DNA content as measured by flow cytometry is shown to be relevant to throw new light on the relationships between Nerine species.

Keywords

Nerine Taxonomy DNA content genome size flow cytometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, J. G. 1896Nerine duparquetianaFlora capensis6214Google Scholar
  2. Bennett, M. D. 1972Nuclear DNA content and minimum generation time in herbaceous plantsProc. Roy. Soc. London181109135Google Scholar
  3. Bolus L. (1938) Nerine hesseoides. The Flowering Plants of South Africa 18 t. 683.Google Scholar
  4. Duncan G. D. (2002a) Grow Nerines. Kirstenbosch Gardening Series. Nat. Bot. Inst., Kirstenbosch, RSA.Google Scholar
  5. Duncan G. D. (2002b) Nerine gaberonensis. Curtis’s Botanical Magazine 19 (3): 173–177.Google Scholar
  6. Duncan, G. D. 2002cThe genus NerineBulbs4915Google Scholar
  7. Dyer R. A. (1951) Nerine duparquetiana. The Flowering Plants of Africa 28 t. 1118.Google Scholar
  8. Dyer R. A. (1952) Nerine huttoniae. The Flowering Plants of Africa 29 t. 1130.Google Scholar
  9. Gouws, J. B. 1949Karyology of some South African AmaryllidaceaePlant Life55460Google Scholar
  10. Greilhuber, J. 1979Evolutionary changes of DNA and heterochromatin amounts in the Scilla bifolia Group (Liliaceae)Pl. Syst. Evol. Suppl2263280Google Scholar
  11. Greilhuber, J. 1998Intraspecific variation in genome size: a critical reassessmentAnn. Bot822735(London)CrossRefGoogle Scholar
  12. Greilhuber, J., Dolezel, J., Lysak, M. A., Bennett, M. D. 2005The origin, evaluation and proposed stabilisation of the terms `Genome size' and `C-value' to describe nuclear DNA contentsAnn. Bot95255260PubMedGoogle Scholar
  13. Grime, J. P. 1998Plant classification for ecological purposes: is there a role for genome size?Ann. Bot82117120Google Scholar
  14. Johnston, J. S., Bennett, M. D., Rayburn, A. L., Galbraith, D. W., Price, H. J. 1999Reference standards for determination of DNA content of plant nucleiAmer. J. Bot86-5609613Google Scholar
  15. Kalender, R., Tanskanen, J., Immonen, S., Nevo, E., Schulman, A. H. 2000Genome evolution of wild barley (Hordeum spontaneum) by Bare-1 retrotransposon dynamics in response to sharp microclimatic divergenceProc. Natl. Acad. USA9766036607Google Scholar
  16. Norris, C.A. 1974The genus NerinePart II Bull. of the Nerine Soc6731Google Scholar
  17. Ohri, D. 1998Genome size variation and plant systematicsAnn. Bot. (London)827583Google Scholar
  18. Obermeyer, A. A. 1993

    Nerine

    Arnold, T. H.Wet, B. C. eds. Plants of Southern Africa, names and distribution: 162National Botanical InstitutePretoria
    Google Scholar
  19. Schönland, S. 1903New and little known plantsRecords of the Albany Museum149Google Scholar
  20. Snijman, D. A. 1995A new Nerine species (Amaryllidaceae, tribe Amaryllidae) from the Koup Karroo, South AfricaNovon5103105Google Scholar
  21. Tiersch, T. R., Chandler, R. W., Wachtel, S. S. M., Ellias, S. 1989Reference standards for flow cytometry and application in comparative studies of nuclear DNA contentCytometry10706710CrossRefPubMedGoogle Scholar
  22. Traub, H. P. 1967Review of the genus Nerine HerbPlant Life23332Google Scholar
  23. Zonneveld, B. J. M. 2001Nuclear DNA contents of all species of Helleborus discriminate between species and sectional divisionsPl. Syst. Evol229125130CrossRefGoogle Scholar
  24. Zonneveld, B. J. M., Iren, F. 2001Genome size and pollen viability as taxonomic criteria: Application to the genus HostaPl. Biol3176185Google Scholar
  25. Zonneveld, B. J. M., Grimshaw, J. M., Davis, A. P. 2003The systematic value of nuclear DNA content in GalanthusPl. Syst. Evol24189102Google Scholar
  26. Zonneveld, B. J. M., Duncan, G. D. 2003Taxonomic implications of genome size and pollen colour and vitality for species of Agapanthus L'Heritier (Agapanthaceae)Pl. Syst. Evol241115123Google Scholar
  27. Zonneveld, B. J. M. 2003The systematic value of nuclear DNA content in CliviaHerbertia574147Google Scholar
  28. Zonneveld, B. J. M., Jaarsveld, E. J. 2005Taxonomic implications of genome size for all species of the genus Gasteria Duval (Aloaceae)Pl. Syst. Evol251217227CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2005

Authors and Affiliations

  1. 1.Institute of BiologyLeiden University, Clusius LaboratoryLeidenThe Netherlands
  2. 2.South African National Biodiversity InstituteKirstenbosch Botanical GardenCape TownSouth Africa

Personalised recommendations