Advertisement

Plant Systematics and Evolution

, Volume 256, Issue 1–4, pp 1–16 | Cite as

Molecular phylogeny of Phalaenopsis Blume (Orchidaceae) based on the internal transcribed spacer of the nuclear ribosomal DNA

  • C C Tsai
  • S C Huang
  • C H ChouEmail author
Article

Abstract

The internal transcribed spacer (ITS1, 5.8S rDNA, and ITS2) region of nuclear ribosomal DNA (nrDNA) was sequenced from 53 species, which represent most of the living species diversity in the genus Phalaenopsis (Orchidaceae). A phylogeny was developed for the genus based on the neighbor-joining and maximum parsimony analyses of molecular data. Results of these analyses provided support for the monophyly of the genus Phalaenopsis and concurred in that the genera Doritis and Kingidium should be treated as being parts of the genus Phalaenopsis as suggested by Christenson (2001). Within the genus Phalaenopsis, neither subgenera Aphyllae nor Parishianae were monophyletic, and they were highly clustered with subgenus Proboscidioides plus sections Esmeralda and Deliciosae of subgenus Phalaenopsis based on ITS data. Those species also have the same characters of morphology of four pollinia and similar biogeographies. Furthermore, neither subgenus Phalaenopsis nor Polychilos was monophyletic. Within the subgenus Phalaenopsis, only section Phalaenopsis was highly supported as being monophyletic. As for the subgenus Polychilos, only section Polychilos was moderately supported as being monophyletic. In conclusion, the present molecular data obtained from the ITS sequence of nrDNA of the genus Phalaenopsis provide valuable information for elucidating the phylogeny of this genus.

Keywords

Phalaenopsis phylogeny rDNA internal transcribed spacer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aoyama, M, Kojima, K, Kobayashi, M 1994Morphology of microspores in Phalaenopsis hybridsKinki Chugoku Agr. Res884953Google Scholar
  2. Baldwin, B. G 1992Phylogenetic utility of the internal transcribed sequences of nuclear ribosomal DNA in plants: an example from the CompositaeMolec. Phylogenet. Evol1316PubMedGoogle Scholar
  3. Baldwin, B. G 1993Molecular phylogenetics of Calycadenia (Compositae) based on ITS sequences of nuclear ribosomal DNA: chromosomal and morphological evolution reexaminedAmer. J. Bot80222238Google Scholar
  4. Baldwin, B. G, Sanderson, M. J, Porter, J. M, Wojciechowski, M. F, Campbell, C.S., Donoghue, M. J 1995The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogenyAnn. Missouri Bot. Gard82247277Google Scholar
  5. Bayer, R. J, Soltis, D. E, Soltis, P. S 1996Phylogenetic inferences in Antennaria (Asteraceae: Gnaphalieae: Cassiniinae) based on sequences from nuclear ribosomal DNA internal transcribed spacers (ITS)Amer. J. Bot83516527Google Scholar
  6. Chen, W. H, Fu, Y. M, Hsieh, R. M, Tsai, W. T, Chyou, M. S, Wu, C. C, Lin, Y. S 1995Application of DNA amplification fingerprinting in the breeding of Phalaenopsis orchidTerzi, MCella, RFalavigna, A eds. Current issues in plant molecular and cellular biologyKluwer Academic PublishersDordrecht, Boston, and London341346Google Scholar
  7. Christenson, E. A 2001PhalaenopsisTimber PressPortland, ORGoogle Scholar
  8. Cox, A. V, Pridgeon, A. M, Albert, V. A, Chase, M. W 1997Phylogenetics of the slipper orchids (Cypripedioideae, Orchidaceae): nuclear rDNA ITS sequencesPl. Syst. Evol208197223CrossRefGoogle Scholar
  9. Doyle, J, Doyle, J 1987A rapid DNA isolation procedure for small quantities of fresh leaf tissuePhytochem. Bull191115Google Scholar
  10. Felsenstein, J 1985Confidence limits on phylogenies: an approach using the bootstrapEvolution39783791Google Scholar
  11. Fitch, W. M 1971Towards defining the course of evolution: minimum change for a specific tree topologySyst. Zool20406416Google Scholar
  12. Hall, T. A 1999BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NTNucl. Acids Symp. Ser419598Google Scholar
  13. Hillis, D. M, Bull, J. J 1993An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysisSyst. Biol42182192Google Scholar
  14. Kao Y. H. (2001) Phylogeny of Phalaenopsis species based on 5S rDNA intergenic sequences. Institute of Botany National Taiwan University, Taipei, Taiwan, Master’s thesis. (in Chinese). Google Scholar
  15. Kimura, M 1980A simple method for estimating evolutionary rates of base substitution through comparative studies of nucleotide sequencesMolec. Evol16111120Google Scholar
  16. Kiss T, Kis M, Solymosy F (1989a) Nucleotide sequence of a 25S rRNA gene from tomato. Nucl. Acids Res 17:796.Google Scholar
  17. Kiss T, Szkukalek A, Solymosy F (1989b) Nucleotide sequence of a 17S (18S) rRNA gene from tomato. Nucl. Acids Res. 17:2127.Google Scholar
  18. Kumar S., Tamura K., Jakobsen I. B., Nei M. (2001) MEGA 2.1: Molecular Evolutionary Genetics Analysis software. Arizona State University, Tempe, AZ.Google Scholar
  19. Rzhetsky, A, Nei, M 1992Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inferenceJ. Molec. Evol35367375PubMedGoogle Scholar
  20. Saitou, N, Nei, M 1987The Neighbor-joining method: a new method for reconstructing phylogenetic treesMolec. Biol. Evol4406425PubMedGoogle Scholar
  21. Seidenfaden, G 1988a Doritis Opera Bot953134Google Scholar
  22. Seidenfaden, G 1988b Kingidium Opera Bot95182189Google Scholar
  23. Shim, P. S 1982A new generic classification in the Phalaenopsis complex (Orchidaceae)Malayan Nat. J36128Google Scholar
  24. Shindo, K, Kamemoto, H 1963Karyotype analysis of some species of PhalaenopsisCytologia28390398Google Scholar
  25. Suh, Y, Thien, L. B, Reeve, H. E, Zimmer, E. A 1993Molecular evolution and phylogenetic implications of internal sequences of nuclear ribosomal DNA in WinteraceaeAmer. J. Bot8010421055Google Scholar
  26. Sun, Y, Skinner, D. Z, Liang, G. H, Hulbert, S. H 1994Phylogenetic analysis of Sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNATheor. Appl. Genet892632CrossRefGoogle Scholar
  27. Sweet, H. R 1968Revision of the genus Phalaenopsis, pt. 2Amer. Orchid Soc. Bull3710891104Google Scholar
  28. Sweet H. R. (1969) Revision of the genus Phalaenopsis, pts. 3 and 4. Amer. Orchid Soc. Bull. 38: 33–43, 225–239.Google Scholar
  29. Sweet, H. R 1980The genus Phalaenopsis. The Orchid DigestPomonaCAGoogle Scholar
  30. Takaiwa, F, Oono, K, Sugiura, M 1984The complete nucleotide sequence of a rice 17S rRNA geneNucl. Acids Res1254415448PubMedGoogle Scholar
  31. Takaiwa, F, Oono, K, Sugiura, M 1985The complete nucleotide sequence of a rice 25S rRNA geneGene37255289PubMedGoogle Scholar
  32. Tanaka, R, Kamemoto, K 1984Chromosomes in orchids: counting and numbersArditti, J eds. Orchid biology: reviews and perspectives Vol. IIIComstock Publishing, Cornell University PressIthaca, N.YGoogle Scholar
  33. Tsai, C. C, Huang, S. C 2001The internal transcribed spacer of ribosomal DNA as a marker for identifying species and hybrids of the OncidinaeJ. Hort. Sci. Biotech76674680Google Scholar
  34. Steenis, C. G. G. J 1950The delimitation of Malaysia and its main plant geographical divisionsFlora Malesiana. Noordhoff-Kolff (Jakarta)17075Google Scholar
  35. Woodard, J. W 1951Some chromosome numbers in PhalaenopsisAmer. Orchid Soc. Bull20356358Google Scholar

Copyright information

© Springer-Verlag Wien 2005

Authors and Affiliations

  1. 1.Kaohsiung District Agricultural Improvement StationPingtungTaiwan
  2. 2.National Pingtung University of Science and TechnologyPingtungTaiwan
  3. 3.Floricultural Research CenterTaiwan Agricultural Research InstituteTaichungTaiwan
  4. 4.National Sun Yat-sen UniversityKaohsiungTaiwan

Personalised recommendations