Skip to main content
Log in

Existence of harmonic solutions for some generalisation of the non-autonomous Liénard equations

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We study the problem of existence of harmonic solutions for some generalisations of the periodically perturbed Liénard equation, where the damping function depends both on the position and the velocity. In the associated phase-space this corresponds to a term of the form f(xy) instead of the standard dependence on x alone. We introduce suitable autonomous systems to control the orbits behaviour, allowing thus to construct invariant regions in the extended phase-space and to conclude about the existence of the harmonic solution, by invoking the Brouwer fixed point Theorem applied to the Poincaré map. Applications are given to the case of the \({ p}\)-Laplacian and the prescribed curvature equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bereanu, C., Mawhin, J.: Existence and multiplicity results for some non-linear problems with singular \(\phi \)-Laplacian. J. Differ. Equ. 243, 536–557 (2007)

    Article  Google Scholar 

  2. Brezis, H., Mawhin, J.: Periodic solutions of the forced relativistic pendulum. Differ. Integral Equ. 23, 801–810 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Bucci, F.: On the existence of periodic solutions for the generalized Liénard equation. Boll. Un. Mat. Ital. B (7) 3, 155–168 (1989)

    MathSciNet  MATH  Google Scholar 

  4. Bucci, F., Villari, G.: Phase portrait of the system \(x=y\),\({\dot{y}}=F(x, y)\). Boll. Un. Mat. Ital. B (7) 4, 265–274 (1990)

    MathSciNet  MATH  Google Scholar 

  5. Carletti, T., Villari, G.: Existence of limit cycles for some generalisation of the Liénard equations: the relativistic and the prescribed curvature cases. Electron. J. Qual. Theory Differ. Equ. 2, 1–15 (2020)

    Article  Google Scholar 

  6. Cartwright, M.L., Littlewood, J.E.: On non-linear differential equations of the second order. I. The equation \(\ddot{y}-k(1-y^2)y+y=b\lambda k\;{\rm cos} (\lambda t+a), k\) large. J. Lond. Math. Soc. 20, 180–189 (1945)

    Article  Google Scholar 

  7. Cartwright, M.L., Littlewood, J.E.: On non-linear differential equations of the second order. II. The equation \(\ddot{y}+kf(y)\dot{y}+g(y, k)=p(t)= p_1(t)+kp_2(t)\); \(k>0\), \(f(y)\geqq 1\). Ann. Math. (2) 48, 472–494 (1947)

    Article  MathSciNet  Google Scholar 

  8. Cioni, M., Villari, G.: An extension of Dragilev’s theorem for the existence of periodic solutions of the Liénard equation. Nonlinear Anal. 128, 55–70 (2015)

    Article  Google Scholar 

  9. Deimling, K.: Nonlinear Functional Analysis. Springer-Verlag, Berlin (1985)

    Book  Google Scholar 

  10. Fonda, A., Toader, R.: Periodic solutions of pendulum-like Hamiltonian systems in the plane. Adv. Nonlinear Stud. 12, 395–408 (2012)

    Article  MathSciNet  Google Scholar 

  11. Levi, M.: Qualitative analysis of the periodically forced relaxation oscillations. Mem. Am. Math. Soc. 32(244), 1–147 (1981)

    MathSciNet  MATH  Google Scholar 

  12. Levinson, N.: A simple second order differential equation with singular motions. Proc. Natl. Acad. Sci. U.S.A. 34, 13–15 (1948)

    Article  MathSciNet  Google Scholar 

  13. Levinson, N.: A second order differential equation with singular solutions. Ann. Math. (2) 50, 127–153 (1949)

    Article  MathSciNet  Google Scholar 

  14. Liénard, A.: Étude des oscillations entretenues. Revue générale d’électricité 23(901–912), 946–954 (1928)

    Google Scholar 

  15. Littlewood, J.E.: On non-linear differential equations of the second order. III. The equation \(\ddot{y}-k(1-y^2)\dot{y}+y=b\mu k\cos (\mu t+\alpha )\) for large \(k\), and its generalizations. Acta Math. 97, 267–308 (1957)

    Article  MathSciNet  Google Scholar 

  16. Littlewood, J.E.: On non-linear differential equations of the second order. IV. The general equation \(\ddot{y}+kf(y)\dot{y}+g(y) =bkp(\phi ),\;\phi =t+\alpha \). Acta Math. 98, 1–110 (1957)

    Article  MathSciNet  Google Scholar 

  17. Maple. https://www.maplesoft.com/products/Maple/

  18. Matworks. https://nl.mathworks.com/

  19. Mawhin, J.: Resonance problems for some nonautonomous differential equations. In: Johnson, R., Pera, M.P. (eds.) Stability and Bifurcation Theory for Non-Autonomous Differential Equations, CIME, Cetraro, (2011), and Lecture Notes in Mathematics, vol. 2065, pp. 103–184. Springer, Berlin (2013)

    Chapter  Google Scholar 

  20. Mawhin, J.: Multiplicity of Solutions of relativistic-type systems with periodic nonlinearities: a survey. Tenth MSU Conference on Differential Equations and Computational Simulations. Electron. J. Differ. Equ. Conf. 23, 77–86 (2016)

    Google Scholar 

  21. Mawhin, J., Villari, G.: Periodic solutions of some autonomous Liénard equations with relativistic acceleration. Nonlinear Anal. 160, 16–24 (2017)

    Article  MathSciNet  Google Scholar 

  22. Mawhin, J., Villari, G., Zanolin, F.: Existence and non-existence of limit cycles for Liénard prescribed curvature equations. Nonlinear Anal. 183, 259–270 (2019)

    Article  MathSciNet  Google Scholar 

  23. Palis, J.: A global perspective for non-conservative dynamics. Ann. Inst. H. Poincaré Anal. Non Linéaire 22, 485–507 (2005)

    Article  MathSciNet  Google Scholar 

  24. Pérez-Gonzalez, S., Torregrosa, J., Torres, P.J.: Existence and uniqueness of limit cycles for generalized \(\phi \)-Laplacian Liénard equations. J. Math. Anal. Appl. 439, 745–765 (2016)

    Article  MathSciNet  Google Scholar 

  25. Smale, S.: Diffeomorphisms with many periodic points. In: Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), pp. 63–80. Princeton University Press, Princeton, NJ (1965)

  26. Villari, G.: Extension of some results on forced nonlinear oscillations. Ann. Mat. Pura Appl. 137, 371–393 (1984)

    Article  MathSciNet  Google Scholar 

  27. Villari, Gaetano: Criteri di esistenza di soluzioni periodiche per una classe di equazioni differenziali del secondo ordine non lineari. Ann. Mat. Pura Appl. 65, 153–166 (1964)

    Article  MathSciNet  Google Scholar 

  28. Villari, G., Zanolin, F.: On the uniqueness of the limit cycle for the Liénard equation, via a comparison method for the energy level curves. Dyn. Syst. Appl. 25, 321–334 (2016)

    MATH  Google Scholar 

  29. Villari, G., Zanolin, F.: On the uniqueness of the limit cycle for the Liénard equation with \(f(x)\) not sign-definite. Appl. Math. Lett. 76, 208–214 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Villari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Adrian Constantin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carletti, T., Villari, G. & Zanolin, F. Existence of harmonic solutions for some generalisation of the non-autonomous Liénard equations. Monatsh Math 199, 243–257 (2022). https://doi.org/10.1007/s00605-021-01652-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-021-01652-3

Keywords

Mathematics Subject Classification

Navigation