Sparse and weighted estimates for generalized Hörmander operators and commutators

  • Gonzalo H. Ibañez-Firnkorn
  • Israel P. Rivera-RíosEmail author


In this paper a pointwise sparse domination for generalized Hörmander and also for iterated commutators with those operators is provided generalizing the sparse domination result in Lerner et al. (Adv Math 319:153–181, 2017). Relying upon that sparse domination a number of quantitative estimates are derived. Some of them are improvements and complementary results to those contained in a series of papers due to Lorente et al. (Stud Math 195(2):157–192, 2009, J Math Anal Appl 342(2):1399–1425, 2008, J Fourier Anal Appl 11(5):497–509, 2005). Also the quantitative endpoint estimates in Lerner et al. (Adv Math 319:153–181, 2017) are extended to iterated commutators. Other results that are obtained in this work are some local exponential decay estimates for generalized Hörmander operators in the spirit of Ortiz-Caraballo et al. (Math Ann 357(4):1217–1243, 2013) and some negative results concerning Coifman–Fefferman estimates for a certain class of kernels satisfying particular generalized Hörmander conditions.


Commutators Generalized Hörmander conditions Sparse operators Weighted inequalities Calderón–Zygmund operators 

Mathematics Subject Classification

42B20 42B25 



The first author would like Carlos Pérez for inviting him to visit BCAM between January and April 2017, and BCAM for the warm hospitality shown during his visit.


  1. 1.
    Bui, T.A., Conde-Alonso, J.M., Duong, X.T., Hormozi, M.: A note on weighted bounds for singular operators with nonsmooth kernels. Stud. Math. 236(3), 245–269 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Caldarelli, M., Lerner, A.K., Ombrosi, S.: On a counterexample related to weighted weak type estimates for singular integrals. Proc. Amer. Math. Soc. 145(7), 3005–3012 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chung, D., Pereyra, M.C., Perez, C.: Sharp bounds for general commutators on weighted Lebesgue spaces. Trans. Am. Math. Soc. 364(3), 1163–1177 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Coifman, R.R., Rochberg, R., Weiss, G.: Factorization theorems for Hardy spaces in several variables. Ann. Math. (2) 103(3), 611–635 (1976)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Conde-Alonso, J.M., Culiuc, A., Di Plinio, F., Yumeng, O.: A sparse domination principle for rough singular integrals. Anal. PDE 10(5), 1255–1284 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Conde-Alonso, J.M., Rey, G.: A pointwise estimate for positive dyadic shifts and some applications. Math. Ann. 365(3–4), 1111–1135 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cruz-Uribe, D., Martell, J.M., Pérez, C.: Extrapolation from \(A_\infty \) weights and applications. J. Funct. Anal. 213(2), 412–439 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cruz-Uribe, D., Martell, J.M., Pérez, C.: Sharp weighted estimates for classical operators. Adv. Math. 229(1), 408–441 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Cruz-Uribe, D.V., Martell, J.M., Pérez, C.: Weights, extrapolation and the theory of Rubio de Francia. In: Gohberg, I., Krupnik, N. (eds.) Operator Theory: Advances and Applications, vol. 215. Springer Basel AG, Basel (2011)zbMATHGoogle Scholar
  10. 10.
    Domingo-Salazar, C., Lacey, M.T., Rey, G.: Borderline weak-type estimates for singular integrals and square functions. Bull. Lond. Math. Soc. 48(1), 63–73 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Duoandikoetxea, J.: Fourier Analysis. Graduate Studies in Mathematics, vol. 29. American Mathematical Society, Providence, RI [Translated and revised from the 1995 Spanish original by David Cruz-Uribe (2001)]Google Scholar
  12. 12.
    Fujii, N.: Weighted bounded mean oscillation and singular integrals. Math. Jpn. 22(5), 529–534 (1977/1978)Google Scholar
  13. 13.
    Hytönen, T.P.: The sharp weighted bound for general Calderón–Zygmund operators. Ann. Math. (2) 175(3), 1473–1506 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hytönen, T.P.: The Holmes–Wick theorem on two-weight bounds for higher order commutators revisited. Arch. Math. (Basel) 107(4), 389–395 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hytönen, T.P., Li, K.: Weak and strong \(A_p\)-\(A_\infty \) estimates for square functions and related operators. Proc. Amer. Math. Soc. 146(6), 2497–2507 (2018)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hytönen, T.P., Pérez, C.: Sharp weighted bounds involving \(A_\infty \). Anal. PDE 6(4), 777–818 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hytönen, T.P., Pérez, C.: The \(L(\log L)^\epsilon \) endpoint estimate for maximal singular integral operators. J. Math. Anal. Appl. 428(1), 605–626 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hytönen, T.P., Pérez, C., Rela, E.: Sharp reverse Hölder property for \(A_\infty \) weights on spaces of homogeneous type. J. Funct. Anal. 263(12), 3883–3899 (2012)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Hytönen, T.P., Roncal, L., Tapiola, O.: Quantitative weighted estimates for rough homogeneous singular integrals. Israel J. Math. 218(1), 133–164 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Lacey, M.T.: An elementary proof of the \(A_2\) bound. Israel J. Math. 217(1), 181–195 (2017)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lerner, A.K.: A simple proof of the \(A_2\) conjecture. Int. Math. Res. Not. IMRN 14, 3159–3170 (2013)CrossRefGoogle Scholar
  22. 22.
    Lerner, A.K.: On pointwise estimates involving sparse operators. N. Y. J. Math. 22, 341–349 (2016)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Lerner, A.K., Nazarov, F.: Intuitive dyadic calculus: the basics. Expo. Math. 37(3), 225–265 (2019)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Lerner, A.K., Ombrosi, S., Rivera-Rí os, I.P.: On pointwise and weighted estimates for commutators of Calderón–Zygmund operators. Adv. Math. 319, 153–181 (2017)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Li, K.: Sparse domination theorem for multilinear singular integral operators with \(L^{r}\)-Hörmander condition. Michigan Math. J. 67(2), 253–265 (2018)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Liu, L., Luque, T.: A \(B_p\) condition for the strong maximal function. Trans. Am. Math. Soc. 366(11), 5707–5726 (2014)CrossRefGoogle Scholar
  27. 27.
    Lorente, M., Martell, J.M., Pérez, C., Riveros, M.S.: Generalized Hörmander conditions and weighted endpoint estimates. Stud. Math. 195(2), 157–192 (2009)CrossRefGoogle Scholar
  28. 28.
    Lorente, M., Martell, J.M., Riveros, M.S., de la Torre, A.: Generalized Hörmander’s conditions, commutators and weights. J. Math. Anal. Appl. 342(2), 1399–1425 (2008)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Lorente, M., Riveros, M.S., de la Torre, A.: Weighted estimates for singular integral operators satisfying Hörmander’s conditions of Young type. J. Fourier Anal. Appl. 11(5), 497–509 (2005)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Martell, J.M., Pérez, C., Trujillo-González, R.: Lack of natural weighted estimates for some singular integral operators. Trans. Am. Math. Soc. 357(1), 385–396 (2005)MathSciNetCrossRefGoogle Scholar
  31. 31.
    O’Neil, R.: Fractional integration in Orlicz spaces. I. Trans. Am. Math. Soc. 115, 300–328 (1965)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Ortiz-Caraballo, C.: Conmutadores de integrales singulares y pesos \(A_{1}\). Ph.D. thesis, Universidad de Sevilla (2011)Google Scholar
  33. 33.
    Ortiz-Caraballo, C., Pérez, C., Rela, E.: Exponential decay estimates for singular integral operators. Math. Ann. 357(4), 1217–1243 (2013)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Pérez, C.: Endpoint estimates for commutators of singular integral operators. J. Funct. Anal. 128(1), 163–185 (1995)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Pérez, C.: On sufficient conditions for the boundedness of the Hardy–Littlewood maximal operator between weighted \(L^p\)-spaces with different weights. Proc. Lond. Math. Soc. (3) 71(1), 135–157 (1995)CrossRefGoogle Scholar
  36. 36.
    Pérez, C., Pradolini, G.: Sharp weighted endpoint estimates for commutators of singular integrals. Mich. Math. J. 49(1), 23–37 (2001)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Pérez, C., Rivera-Ríos, I.P.: Three observations on commutators of singular integral operators with BMO functions. Harmonic analysis, partial dierential equations, Banach spaces, and operator theory. Vol. 2, 287–304, Assoc. Women Math. Ser., 5, Springer, Cham, (2017)Google Scholar
  38. 38.
    Pérez, C., Rivera-Ríos, I.P.: Borderline weighted estimates for commutators of singular integrals. Isr. J. Math. 217(1), 435–475 (2017)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Rao, M.M., Ren, Z.D.: Theory of Orlicz Spaces. Monographs and Textbooks in Pure and Applied Mathematics, vol. 146. Marcel Dekker Inc, New York (1991)Google Scholar
  40. 40.
    Wilson, J.M.: Weighted inequalities for the dyadic square function without dyadic \(A_\infty \). Duke Math. J. 55(1), 19–50 (1987)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.BCAM - Basque Center for Applied MathematicsBilboSpain
  2. 2.FaMAFUniversidad Nacional de CórdobaCórdobaArgentina
  3. 3.CIEM-CONICETCórdobaArgentina
  4. 4.Departamento de Matemáticas/Matematika SailaUniversidad del País Vasco/Euskal Herriko UnibertsitateaLeioaSpain
  5. 5.Departamento de MatemáticaUniversidad Nacional del SurBahía BlancaArgentina
  6. 6.INMABB-CONICETBahía BlancaArgentina

Personalised recommendations