Advertisement

Aperiodicity of signs of Hecke eigenvalues

  • Guangshi LüEmail author
Article
  • 19 Downloads

Abstract

Let f be a normalized Hecke eigenform of weight k and arbitrary level, and \(\lambda _f(n)\) be the nth normalized Fourier coefficient of f. Let g(n) be any multiplicative function of modulus at most 1, which satisfies that for all primes p, g(p) are all positive (or are all negative). It is derived that for each \(\ell \in {\mathbb {N}}\), and every Dirichlet character \(\chi \), \(g(n)sgn(\lambda _f(n^{\ell }))\), \(g(n)\chi (n)sgn(\lambda _f(n^{\ell }))\) and other related functions are (strongly) aperiodic multiplicative functions. This gives that they are \(U^s\)-uniform and then fully oscillating sequences. As corollaries, they are orthogonal to any dynamical sequence arising from topological dynamical systems with quasi-discrete spectrum, and multiple ergodic realizations of affine maps of zero topological entropy on compact Abelian groups. We further find that they satisfy an averaged version of a conjecture of Elliott regarding correlations of bounded multiplicative functions.

Keywords

Multiplicative function Hecke eigenvalue Aperiodicity Oscillating sequences 

Mathematics Subject Classification

11N37 11F30 11F11 

Notes

Acknowledgements

This work is supported in part by NSFC (Nos. 11771252, 11531008), IRT16R43, and Taishan Scholars Project. The author would like to thank the reviewer for valuable suggestions and detailed comments, and to thank Dr. X. He for useful discussion.

References

  1. 1.
    Davenport, H.: On some infinite series involving arithmetical functions (II). Q. J. Math. 8, 313–320 (1937)CrossRefGoogle Scholar
  2. 2.
    Deligne, P.: La conjecture de Weil, I. Publ. Math. IHES 48, 273–308 (1974) MathSciNetCrossRefGoogle Scholar
  3. 3.
    Deligne, P.: La conjecture de Weil, II. Publ. Math. IHES 52, 313–428 (1981)Google Scholar
  4. 4.
    El Abdalaoui, E.H., Leman̈czyk, M., de la Rue, T.: Automorphisms with quasi-discrete spectrum, multiplicative functions and average orthogonality along short intervals. Int. Math. Res. Not. IMRN 14, 4350–4368 (2017)MathSciNetzbMATHGoogle Scholar
  5. 5.
    El Abdalaoui, E.H.: Oscillating sequences, Gowers norms and Sarnak’s conjecture. arXiv:1704.07243 [math.DS]
  6. 6.
    Elliott, P.D.T.A.: Probabilistic Number Theory I: Mean-Value Theorems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 239. Springer, New York (1979)CrossRefGoogle Scholar
  7. 7.
    Fan, A.H.: Oscillating sequences of higher orders and topological systems of quasi-discrete spectrum. arXiv:1802.05204 [math.DS]
  8. 8.
    Fan, A.H.: Fully oscillating sequences and weighted multiple ergodic limit. Comptes Rendus Acad. Sci. Paris Ser. I 355, 866–870 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Fan, A.H., Jiang, Y.P.: Oscillating sequences, minimal mean attractability and minimal mean-Lyapunov stability. Ergod. Theory Dyn. Syst. 38, 1709–1744 (2018)CrossRefGoogle Scholar
  10. 10.
    Frantzikinakis, N.: An averaged Chowla and Elliott conjecture along independent polynomials. Int. Math. Res. Not. 12, 3721–3743 (2018)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Frantzikinakis, N., Host, B.: Higher order Fourier analysis of multiplicative functions and applications. J. Am. Math. Soc. 30, 67–157 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ghosh, A., Sarnak, P.: Real zeros of holomorphic Hecke cusp forms. J. Eur. Math. Soc. 14, 465–487 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Granville, W.T., Soundararajan, K.: Multiplicative number theory: the pretentious approach. http://www.dms.umontreal.ca/andrew/PDF/BookChaps1n2.pdf (in preparation)
  14. 14.
    Halász, G.: Über die Mittelwerte multiplikativer zahlentheoretischer Funktionen (German). Acta Math. Acad. Sci. Hung. 19, 365–403 (1968)CrossRefGoogle Scholar
  15. 15.
    Hua, L.G.: Additive Theory of Prime Numbers. Translations of Mathematical Monographs, vol. 13. American Mathematical Society, Providence (1966)Google Scholar
  16. 16.
    Iwaniec, H., Kowalski, E.: Analytic Number Theory, American Mathematical Society Colloquium Publications, vol. 53. American Mathematical Society, Providence (2004)Google Scholar
  17. 17.
    Kátai, I.: A remark on a theorem of Daboussi. Acta Math. Hung. 47, 223–225 (1986)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kowalski, E., Lau, Y.-K., Soundararajan, K., Wu, J.: On modular signs. Math. Proc. Camb. Philos. Soc. 149, 389–411 (2010)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Matomäki, K., Radziwill, M.: Multiplicative functions in short intervals. Ann. Math. 183, 1015–1056 (2016)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Murty, M.R., Murty, V.K.: The Sato–Tate Conjecture for the Ramanujan \(\tau \)-Function. The Mathematical Legacy of Srinivasa Ramanujan. Springer, India (2013).  https://doi.org/10.1007/978-81-322-0770-2-12 CrossRefzbMATHGoogle Scholar
  21. 21.
    Rauzy, G.: Proprits statistiques de suites arithmétiques. Le Mathématicien, No. 15. Collection SUP. Presses Universitaires de France, Paris (1976)Google Scholar
  22. 22.
    Sarnak, P.: Three Lectures on the Möbius Function, Randomness and Dynamics. IAS Lecture Notes (2009). http://publications.ias.edu/sites/default/files/MobiusFunctionsLectures(2).pdf
  23. 23.
    Taylor, R.: Automorphy of some \(\ell \)-adic lifts of automorphic mod \(\ell \) representations, II. Publ. Math. IHES 108, 183–239 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of MathematicsShandong UniversityJinanChina

Personalised recommendations