Advertisement

Instability of geophysical flows at arbitrary latitude

  • Xun Wang
  • Yanjuan YangEmail author
Article
  • 26 Downloads

Abstract

In this paper, we present an exact solution of the nonlinear governing equations for the geophysical waves propagating above the thermocline toward the east at arbitrary latitude. Based on the short-wavelength instability approach, we demonstrate the criteria for the hydrodynamical instability of such water waves.

Keywords

Geophysical flows Thermocline Instability 

Mathematics Subject Classification

37N10 74G05 76B15 

Notes

Acknowledgements

Yanjuan Yang was supported by the Fundamental Research Funds for the Central Universities (Grant No. 2017B715X14) and the Postgraduate Research and Practice Innovation Program of Jiangsu Province (Grant No. KYCX17\(_{-}\)0508).

References

  1. 1.
    Bayly, B.J.: Three-dimensional instabilities in quasi-two-dimensional inviscid flows. In: Miksad, R.W., et al. (eds.) Nonlinear Wave Interactions in Fluids, pp. 71–77. ASME, New York (1987)Google Scholar
  2. 2.
    Bennett, A.: Lagrangian Fluid Dynamics. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  3. 3.
    Chu, J., Ionescu-Kruse, D., Yang, Y.: Exact solution and instability for geophysical waves at arbitrary latitude. Discrete Contin. Dyn. Syst. 39, 4399–4414 (2019)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chu, J., Ionescu-Kruse, D., Yang, Y.: Exact solution and instability for geophysical waves with centripetal forces and at arbitrary latitude. J. Math. Fluid Mech. 21, 16 (2019)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Constantin, A.: On the deep water wave motion. J. Phys. A 34, 1405–1417 (2001)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Constantin, A.: The trajectories of particles in Stokes waves. Invent. Math. 166, 523–535 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Constantin, A., Strauss, W.: Pressure beneath a Stokes wave. Comm. Pure Appl. Math. 63, 533–557 (2010)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Constantin, A.: Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis. CBMS-NSF Conference Series in Applied Mathematics, vol. 81. SIAM, Philadelphia (2011)CrossRefGoogle Scholar
  9. 9.
    Constantin, A.: An exact solution for equatorially trapped waves. J. Geophys. Res. 117, C05029 (2012)CrossRefGoogle Scholar
  10. 10.
    Constantin, A.: On the modelling of equatorial waves. Geophys. Res. Lett. 39, L05602 (2012)CrossRefGoogle Scholar
  11. 11.
    Constantin, A.: Some three-dimensional nonlinear equatorial flows. J. Phys. Oceanogr. 43, 165–175 (2013)CrossRefGoogle Scholar
  12. 12.
    Constantin, A., Germain, P.: Instability of some equatorially trapped waves. J. Geophys. Res. Oceans 118, 2802–2810 (2013)CrossRefGoogle Scholar
  13. 13.
    Constantin, A.: Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves. J. Phys. Oceanogr. 44, 781–789 (2014)CrossRefGoogle Scholar
  14. 14.
    Constantin, A., Johnson, R.S.: The dynamics of waves interacting with the Equatorial Undercurrent. Geophys. Astrophys. Fluid Dyn. 109, 311–358 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Constantin, A., Monismith, S.G.: Gerstner waves in the presence of mean currents and rotation. J. Fluid Mech. 820, 511–528 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Constantin, A., Johnson, R.S.: Steady large-scale ocean flows in spherical coordinates. Oceanography 31, 42–50 (2018)CrossRefGoogle Scholar
  17. 17.
    Constantin, A., Ivanov, R.I.: Equatorial wave-current interactions. Commun. Math. Phys. 370, 1–48 (2019)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Constantin, A., Johnson, R.S.: On the nonlinear, three-dimensional structure of equatorial oceanic flows. J. Phys. Oceanogr. 49, 2029–2042 (2019)CrossRefGoogle Scholar
  19. 19.
    Cushman-Roisin, B., Beckers, J.M.: Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects. Academic Press, Waltham (2011)zbMATHGoogle Scholar
  20. 20.
    Fan, L., Gao, H.: Instability of equatorial edge waves in the background flow. Proc. Am. Math. Soc. 145, 765–778 (2017)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Fan, L., Gao, H., Xiao, Q.: An exact solution for geophysical trapped waves in the presence of an underlying current. Dyn. Partial Differ. Equ. 15, 201–214 (2018)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Friedlander, S., Vishik, M.M.: Instability criteria for the flow of an inviscid incompressible fluid. Phys. Rev. Lett. 66, 2204–2206 (1991)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Gerstner, F.: Theorie der wellen samt einer daraus abgeleiteten Theorie der Deichprofile. Ann. Phys. 2, 412–445 (1809)CrossRefGoogle Scholar
  24. 24.
    Genoud, F., Henry, D.: Instability of equatorial water waves with an underlying current. J. Math. Fluid Mech. 16, 661–667 (2014)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Gill, A.E.: Atmosphere—Ocean Dynamics. Academic Press, London (1982)Google Scholar
  26. 26.
    Henry, D.: The trajectories of particles in deep-water Stokes waves. Int. Math. Res. Not. 2006, 13 (2006)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Henry, D.: On Gerstner’s water wave. J. Nonlinear Math. Phys. 15, 87–95 (2008)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Henry, D.: An exact solution for equatorial geophysical water waves with an underlying current. Eur. J. Mech. B Fluids 38, 18–21 (2013)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Henry, D., Hsu, H.-C.: Instability of equatorial water waves in the \(f\)-plane. Discrete Contin. Dyn. Syst. 35, 909–916 (2015)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Henry, D., Hsu, H.-C.: Instability of internal equatorial water waves. J. Differ. Equ. 258, 1015–1024 (2015)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Henry, D.: Exact equatorial water waves in the \(f\)-plane. Nonlinear Anal. Real World Appl. 28, 284–289 (2016)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Henry, D.: Equatorially trapped nonlinear water waves in a \(\beta \)-plane approximation with centripetal forces. J. Fluid Mech. 804, R1, 11 (2016)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Henry, D.: A modified equatorial \(\beta \)-plane approximation modelling nonlinear wave-current interactions. J. Differ. Equ. 263, 2554–2566 (2017)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Henry, D.: On three-dimensional Gerstner-like equatorial water waves. Philos. Trans. R. Soc. A 376, 1–16 (2018)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Henry, D., Martin, C.-I.: Exact, purely azimuthal stratified equatorial flows in cylindrical coordinates. Dyn. Partial Differ. Equ. 15, 337–349 (2018)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Henry, D., Martin, C.-I.: Exact, free-surface equatorial flows with general stratification in spherical coordinates. Arch. Ration. Mech. Anal. 233, 497–512 (2019)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Hsu, H.-C.: An exact solution for equatorial waves. Monatsh. Math. 176, 143–152 (2015)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Ionescu-Kruse, D.: An exact solution for geophysical edge waves in the \(f\)-plane approximation. Nonlinear Anal. Real World Appl. 24, 190–195 (2015)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Ionescu-Kruse, D.: An exact solution for geophysical edge waves in the \(\beta \)-plane approximation. J. Math. Fluid Mech. 17, 699–706 (2015)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Ionescu-Kruse, D.: Instability of equatorially trapped waves in stratified water. Ann. Mat. Pura Appl. 195, 585–599 (2016)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Ionescu-Kruse, D.: On the short-wavelength stabilities of some geophysical flows. Philos. Trans. R. Soc. A 376, 1–21 (2017)MathSciNetGoogle Scholar
  42. 42.
    Ionescu-Kruse, D.: A three-dimensional autonomous nonlinear dynamical system modelling equatorial ocean flows. J. Differ. Equ. 264, 4650–4668 (2018)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Ionescu-Kruse, D.: Local stability for an exact steady purely azimuthal flow which models the antarctic circumpolar current. J. Math. Fluid Mech. 20, 569–579 (2018)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Ionescu-Kruse, D., Martin, C.-I.: Local stability for an exact steady purely azimuthal equatorial flow. J. Math. Fluid Mech. 20, 27–34 (2018)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Lifschitz, A., Hameiri, E.: Local stability conditions in fluid mechanics. Phys. Fluids 3, 2644–2651 (1991)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Pollard, R.T.: Surface waves with rotation: an exact solution. J. Geophys. Res. 75, 5895–5898 (1970)CrossRefGoogle Scholar
  47. 47.
    Rodriguez-Sanjurjo, A.: Instability of nonlinear wave-current interactions in a modified equatorial \(\beta \)-plane approximation. J. Math. Fluid Mech. 21, R24, 12 (2019)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Vallis, G.K.: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsShanghai Normal UniversityShanghaiChina
  2. 2.Department of Mathematics, College of ScienceHohai UniversityNanjingChina

Personalised recommendations