Advertisement

On preservation of automatic continuity

  • Samuel M. CorsonEmail author
  • Ilya Kazachkov
Article
  • 8 Downloads

Abstract

A group G is called automatically continuous if any homomorphism from a completely metrizable or locally compact Hausdorff group to G has open kernel. In this paper, we study preservation of automatic continuity under group-theoretic constructions, focusing mainly on groups of size less than continuum. In particular, we consider group extensions and graph products. As a consequence, we establish automatic continuity of virtually poly-free groups, and hence of non-exceptional spherical Artin groups. On the other hand, we show that if G is automatically continuous, then so is any finitely generated residually G group, hence, for instance, all finitely generated residually free groups are automatically continuous.

Keywords

Free group First order theory Braid group Slender Root extraction Limit group 

Mathematics Subject Classification

Primary 54H11 20E26 Secondary 20F36 20E05 

Notes

References

  1. 1.
    Artin, E.: Theories der Zöpfe. Abh. Math. Sem. Hamburgischen Univ. 4, 47–72 (1925)CrossRefzbMATHGoogle Scholar
  2. 2.
    Brieskorn, E.: Sur les groupes de tresses. Sémininaire Bourbaki 24e année, 1971/72, no. 401, LNM, pp. 21–44. Springer, Berlin (1973)zbMATHGoogle Scholar
  3. 3.
    Cannon, J., Conner, G.: The combinatorial structure of the Hawaiian earring group. Topol. Appl. 106, 225–271 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Clearly, J., Morris, S.: Topologies on locally compact groups. Bull. Aust. Math. Soc. 38, 105–111 (1988)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Conner, G.: personal communicationGoogle Scholar
  6. 6.
    Conner, G., Corson, S.: A note on automatic continuity. Proc. Am. Math. Soc. 147, 1255–1268 (2019)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Corson, S.: The number of homomorphisms from the Hawaiian earring group. J. Algebra 523, 34–52 (2019)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Corson, S.: Automatic continuity of \(\aleph _1\)-free groups. arXiv:1808.00272
  9. 9.
    Dudley, R.: Continuity of homomorphisms. Duke Math. J. 28, 587–594 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Eda, K.: Free \(\sigma \)-products and noncommutatively slender groups. J. Algebra 148, 243–263 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Eda, K.: Atomic property of the fundamental groups of the Hawaiian earring and wild locally path-connected spaces. J. Math. Soc. Jpn. 63, 769–787 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Goda, K.M.: Centralisers in graph products of Groups. PhD Thesis, University of Newcastle-Upon-Tyne (2006)Google Scholar
  13. 13.
    Green, E.: Graph products of groups, PhD thesis, University of Leeds (1990)Google Scholar
  14. 14.
    Guba, V., Sapir, M.: Diagram groups. Mem. Amer. Math. Soc. 130(620), 1–117 (1997)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Higman, G.: Unrestricted free products and varieties of topological groups. J. Lond. Math. Soc. 27, 73–81 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kolman, O., Shelah, S.: Infinitary axiomatizability of slender and cotorsion-free groups. Bull. Belg. Math. Soc. Simon Stevin 7, 623–629 (2000)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Mekler, A.: How to construct almost free groups. Can. J. Math. 32, 1206–1228 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Morris, S., Nickolas, P.: Locally compact group topologies on algebraic free products of groups. J. Algebra 38, 393–397 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Osin, D.: Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems. Mem. Am. Math. Soc. 179(843), vi+100 (2006)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Sa̧siada, E.: Proof that every countable and reduced torsion-free abelian group is slender. Bull. Acad. Pol. Sci. 7, 143–144 (1959)MathSciNetGoogle Scholar
  21. 21.
    Slutsky, K.: Automatic continuity for homomorphisms into free products. J. Symb. Log. 78, 1288–1306 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Specker, E.: Additive Gruppen von Folgen ganzer Zahlen. Port. Math. 9, 131–140 (1950)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Matematika SailaUPV/EHULeioaSpain

Personalised recommendations