Advertisement

A mean-value theorem for positive linear functionals

  • Mircea IvanEmail author
  • Vicuta Neagos
  • Andra-Gabriela Silaghi
Article
  • 15 Downloads

Abstract

We provide a mean-value theorem for a class of positive linear functionals. As an application, we improve the classical First Mean-value Theorem for Integrals and obtain other related results.

Keywords

Positive linear functionals Mean-value theorems Integrals of Riemann type 

Mathematics Subject Classification

26A24 26A42 

Notes

Acknowledgements

We thank the reviewer for valuable suggestions and help in revising the manuscript.

References

  1. 1.
    First mean value theorem for definite integrals. https://en.wikipedia.org/wiki/Mean_value_theorem
  2. 2.
    Bartle, R.G.: A Modern Theory of Integration. Graduate Studies in Mathematics, vol. 32. American Mathematical Society, Providence (2001).  https://doi.org/10.1090/gsm/032 zbMATHGoogle Scholar
  3. 3.
    Courant, R.: Differential and Integral Calculus, Vol. I. Wiley Classics Library. Wiley, New York (1988). Translated from the German by E. J. McShane, Reprint of the second edition (1937), A Wiley-Interscience PublicationGoogle Scholar
  4. 4.
    Flett, T.M.: A mean value theorem. Math. Gazette 42, 38–39 (1958)CrossRefGoogle Scholar
  5. 5.
    Goursat, E.: A Course in Mathematical Analysis: Vol 1: Derivatives and Differentials, Definite Integrals, Expansion in Series, Applications to Geometry. Vol. 2, Part 1: Functions of a Complex Variable. Vol. 2, Part 2: Differential Equations. Translated by E. R. Hedrick (Vol. 1), and E. R. Hedrick and O. Dunkel (Vol. 2). Dover Publications, Inc., New York (1959)Google Scholar
  6. 6.
    Hobson, E.W.: On the second mean-value theorem of the integral calculus. Proc. Lond. Math. Soc. 2(7), 14–23 (1909).  https://doi.org/10.1112/plms/s2-7.1.14 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Khalili, P., Vasiliu, D.: An extension of the mean value theorem for integrals. Int. J. Math. Edu. Sci. Technol. 41(5), 707–710 (2010).  https://doi.org/10.1080/00207391003606476 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Monea, M.: An integral mean value theorem concerning two continuous functions and its stability. Int. J. Anal. pp. Art. ID 894,625, 4 (2015).  https://doi.org/10.1155/2015/894625
  9. 9.
    Monea, M.: Some considerations about Hyers-Ulam stability of the intermediary point arising from the mean value theorems. Publications de l’Institut Mathematique 104(118), 193–208 (2018).  https://doi.org/10.2298/PIM1818193M MathSciNetCrossRefGoogle Scholar
  10. 10.
    Neuser, D.A.: A survey in mean value theorems. In: All Graduate Theses and Dissertations. 6842 (1970). https://digitalcommons.usu.edu/etd/6842. Utah State University
  11. 11.
    Sahoo, P.K., Riedel, T.: Mean Value Theorems and Functional Equations. World Scientific Publishing Co., Inc., River Edge (1998)CrossRefzbMATHGoogle Scholar
  12. 12.
    Thomson, B.S.: The Calculus Integral. classicalrealanalysis.com (2010). ISBN: 1442180951Google Scholar
  13. 13.
    Wayment, S.G.: An integral mean value theorem. Math. Gaz. 54(389), 300–301 (1970)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1950).  https://doi.org/10.1017/CBO9780511608759. An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with An Account of the Principal Transcendental Functions, Reprint of the fourth (1927) edition

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsTechnical University of Cluj-NapocaCluj-NapocaRomania

Personalised recommendations