On finite p-groups satisfying given laws

  • Primož MoravecEmail author


A variety of groups does not contain all metabelian groups if and only if there is an absolute bound for the nilpotency classes of powerful p-groups in the given variety. Similarly, a variety contains only finitely many finite p-groups of any given coclass if and only if not every group that is an extension of an abelian group by an elementary abelian p-group belongs to that variety.


Finite p-groups Varieties of groups Coclass Powerful p-groups 

Mathematics Subject Classification

20D15 20E10 



  1. 1.
    Abdollahi, A., Traustason, G.: On locally finite \(p\)-groups satisfying an Engel condition. Proc. Am. Math. Soc. 130, 2827–2836 (2002)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Dixon, J.D., du Sautoy, M.P.F., Mann, A., Segal, D.: Analytic Pro-\(p\) Groups. London Math. Soc. Ser., vol. 157. Cambridge University Press, Cambridge (1991)Google Scholar
  3. 3.
    Fernández-Alcober, G.A., González-Sánchez, J., Jaikin-Zapirain, A.: Omega subgroups of pro-\(p\) groups. Isr. J. Math. 166(1), 393–412 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Groves, J.R.J.: Varieties of soluble groups and a dichotomy of P. Hall. Bull. Aust. Math. Soc. 5, 391–410 (1971)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Groves, J.R.J.: On varieties of soluble groups II. Bull. Aust. Math. Soc. 7, 437–441 (1972)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Leedham-Green, C.R., McKay, S.: The Structure of Groups of Prime Power Order. Oxford University Press, Oxford (2002)zbMATHGoogle Scholar
  7. 7.
    Lubotzky, A., Mann, A.: Powerful \(p\)-groups. I. Finite groups. J. Algebra 105, 484–505 (1987)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Neumann, H.: Varieties of groups. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 37. Springer, Berlin (1967)zbMATHGoogle Scholar
  9. 9.
    Segal, D.: Words: Notes on Verbal Width in Groups. London Mathematical Society Lecture Note Series, vol. 361. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  10. 10.
    Shalev, A.: The structure of finite \(p\)-groups. Effective proof of the coclass conjectures. Invent. Math. 115, 315–345 (1994)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Traustason, G.: Milnor groups and (virtual) nilpotence. J. Group Theory 8, 203–221 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Traustason, G.: Engel groups. Groups St Andrews 2009 in Bath. Volume 2, pp. 520–550, London Math. Soc. Lecture Note Ser., 388, Cambridge Univ. Press, Cambridge (2011)Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Mathematics and PhysicsUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations