Advertisement

Monatshefte für Mathematik

, Volume 188, Issue 2, pp 321–350 | Cite as

(pq)-Regular operators between Banach lattices

  • Enrique A. Sánchez Pérez
  • Pedro TradaceteEmail author
Article
  • 67 Downloads

Abstract

We study the class of (pq)-regular operators between quasi-Banach lattices. In particular, a representation of this class as the dual of a certain tensor norm for Banach lattices is given. We also provide some factorization results for (pq)-regular operators yielding new Marcinkiewicz–Zygmund type inequalities for Banach function spaces. An extension theorem for \((q, \infty )\)-regular operators defined on a subspace of \(L_q\) is also given.

Keywords

Banach lattice (p, q)-Regular operator Marcinkiewicz–Zygmund inequalities Lattice tensor norm 

Mathematics Subject Classification

46B42 47L20 46M05 

References

  1. 1.
    Aliprantis, C.D., Burkinshaw, O.: Positive Operators. Springer, Dordrecht (2006) (Reprint of the 1985 original)Google Scholar
  2. 2.
    Bukhvalov, A.V.: On complex interpolation method in spaces of vector-functions and generalized Besov spaces. Dokl. Akad. Nauk SSSR 260(2), 265–269 (1981)MathSciNetGoogle Scholar
  3. 3.
    Bukhvalov, A.V.: Order-bounded operators in vector lattices and spaces of measurable functions. Translated in J. Soviet Math. 54(5), 1131–1176 (1991). Itogi Nauki i Tekhniki, Mathematical analysis, Vol. 26 (Russian), 3–63, 148, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow (1988)Google Scholar
  4. 4.
    Calderón, A.P.: Intermediate spaces and interpolation, the complex method. Stud. Math. 24, 113–190 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Danet, N.: Lattice \((p, q)\)-summing operators and their conjugates. Stud. Cerc. Mat. 40(1), 99–107 (1988)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Defant, A.: Variants of the Maurey–Rosenthal theorem for quasi Köthe function spaces. Positivity 5, 153–175 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Defant, A., Floret, K.: Tensor Norms and Operator Ideals. North-Holland Mathematics Studies, vol. 176. North-Holland, Amsterdam (1993)zbMATHGoogle Scholar
  8. 8.
    Defant, A., Sánchez Pérez, E.A.: Maurey–Rosenthal factorization of positive operators and convexity. J. Math. Anal. Appl. 297(2), 771–790 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Defant, A., Junge, M.: Best constants and asymptotics of Marcinkiewicz–Zygmund inequalities. Stud. Math. 125(3), 271–287 (1997)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Gasch, J., Maligranda, L.: On vector-valued inequalities of the Marcinkiewicz–Zygmund. Herz Kriv. Type Math. Nachr. 167, 95–129 (1994)CrossRefzbMATHGoogle Scholar
  11. 11.
    Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge Studies in Advanced Mathematics, vol. 43. Cambridge University Press, Cambridge (1995)CrossRefzbMATHGoogle Scholar
  12. 12.
    Fremlin, D.H.: Tensor products of Banach lattices. Math. Ann. 211, 87–106 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kalton, N.J.: Convexity conditions for non-locally convex lattices. Glasg. Math. J 25, 141–152 (1984)CrossRefzbMATHGoogle Scholar
  14. 14.
    Krivine, J.L.: Thèorèmes de factorisation dans les espaces rèticulès. Sèminaire Maurey–Schwartz 1973–1974: Espaces \(L^{p}\), applications radonifiantes et gèomètrie des espaces de Banach, Exp. Nos. 22 et 23. Centre de Math., Ècole Polytech., Paris (1974)Google Scholar
  15. 15.
    Kusraev, A.G.: Dominated Operators. Mathematics and Its Applications, vol. 519. Kluwer, Dordrecht (2000)CrossRefGoogle Scholar
  16. 16.
    Levy, M.: Prolongement d’un opérateur d’un sous-espace de \(L_1(\mu )\) dans \(L_1(\nu )\). Seminar on Functional Analysis, 1979–1980, Exp. No. 5, 5 pp., École Polytech., Palaiseau (1980)Google Scholar
  17. 17.
    Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces II: Function Spaces. Springer, Berlin (1979)CrossRefzbMATHGoogle Scholar
  18. 18.
    Nielsen, N.J., Szulga, J.: \(p\)-Lattice summing operators. Math. Nachr. 119, 219–230 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Pietsch, A.: Operator Ideals. North-Holland, Amsterdam (1980)zbMATHGoogle Scholar
  20. 20.
    Pisier, G.: Complex interpolation and regular operators between Banach lattices. Arch. Math. (Basel) 62(3), 261–269 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Pisier, G.: Grothendieck’s theorem, past and present. Bull. Am. Math. Soc. 49(2), 237–323 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Popa, N.: Uniqueness of the symmetric structure in \(L_p(\mu )\) for \(0 < p < 1\). Rev. Roum. Math. Pures Appl. 27, 1061–1083 (1982)zbMATHGoogle Scholar
  23. 23.
    Raynaud, Y., Tradacete, P.: Calderón–Lozanovskii interpolation of quasi-Banach lattices. Banach J. Math. Anal. 12(2), 294–313 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Schep, A.R.: Products and factors of Banach function spaces. Positivity 14, 301–319 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Wojtaszczyk, P.: Banach Spaces for Analysts, vol. 25. Cambridge University Press, Cambridge (1996)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto Universitario de Matemática Pura y AplicadaUniversitat Politècnica de ValènciaValenciaSpain
  2. 2.Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM) Consejo Superior de Investigaciones CientíficasMadridSpain

Personalised recommendations