Advertisement

The Green–Tao theorem for primes of the form \(x^2+y^2+1\)

  • Yu-Chen Sun
  • Hao Pan
Article
  • 46 Downloads

Abstract

We prove that the primes of the form \(x^2+y^2+1\) contain arbitrarily long non-trivial arithmetic progressions.

Keywords

Prime Arithmetic progression Pseudorandom measure 

Mathematics Subject Classification

Primary 11P32 Secondary 11B25 11B30 11N36 

Notes

Acknowledgements

We are grateful to the anonymous referee for his/her very helpful comments. We also thank Professor Henryk Iwaniec for his helpful explanation on Theorem 1 of [7]. The work is supported by National Natural Science Foundation of China (Grant No. 11671197). The second author is the corresponding author.

References

  1. 1.
    Conlon, D., Fox, J., Zhao, Y.: A relative Szemerdi theorem. Geom. Funct. Anal. 25, 733–762 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Goldston, D.A., Yıldırım, C.Y.: Higher correlations of divisor sums related to primes, I: triple correlations. Integers 3, 66pp (2003)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Goldston, D.A., Pintz, J., Yıldırım, C.Y.: Primes in tuples. I. Ann. Math. 170(2), 819–862 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Green, B.: Roth’s theorem in the primes. Ann. Math. 161(2), 1609–1636 (2005)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Green, B., Tao, T.: The primes contain arbitrarily long arithmetic progressions. Ann. Math. 167(2), 481–547 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Green, B., Tao, T.: Linear equations in primes. Ann. Math. 171(2), 1753–1850 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Iwaniec, H.: Primes of the type \(\phi (x, y)+A\) where \(\phi \) is a quadratic form. Acta Arith. 21, 203–234 (1972)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Lê, T.-H.: Green-Tao theorem in function fields. Acta Arith. 147, 129–152 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Lê, T.-H., Wolf, J.: Polynomial configurations in the primes, Int. Math. Res. Not. IMRN 2014, 6448–6473Google Scholar
  10. 10.
    Linnik, J.V.: An asymptotic formula in an additive problem of Hardy–Littlewood. Izv. Akad. Nauk SSSR Ser. Mat. bf 24, 629706 (1960)MathSciNetGoogle Scholar
  11. 11.
    Matomäki, K.: Prime numbers of the form \(p=m^2+n^2+1\) in short intervals. Acta Arith. 128, 193–200 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Matomäki, K.: The binary Goldbach problem with one prime of the form \(p=k^2+l^2+1\). J. Number Theory 128, 1195–1210 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Motohashi, Y., On the distribution of prime numbers which are of the form \(x^2+y^2+1\), Acta Arith. 16 (1969/1970), 351–363Google Scholar
  14. 14.
    Pintz, J.: Polignac Numbers, Conjectures of Erdős on Gaps Between Primes, Arithmetic Progressions in Primes, and the Bounded Gap Conjecture, From Arithmetic to Zeta-functions, pp. 367–384. Springer, Berlin (2016)zbMATHGoogle Scholar
  15. 15.
    Stein, E.M., Shakarchi, R.: Fourier Analysis. An introduction. Princeton Lectures in Analysis 1. Princeton University Press, Princeton, NJ (2003)zbMATHGoogle Scholar
  16. 16.
    Tao, T.: The Gaussian primes contain arbitrarily shaped constellations. J. Anal. Math. 99, 109–176 (2006)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Tao, T.: A remark on Goldston–Yildirim correlation estimates, preprint, available on: http://www.math.ucla.edu/~tao/preprints/Expository/gy-corr.dvi
  18. 18.
    Tao, T., Ziegler, T.: The primes contain arbitrarily long polynomial progressions. Acta Math. 201, 213–305 (2008)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Tao, T., Ziegler, T.: A multi-dimensional Szemerédi theorem for the primes via a correspondence principle. Israel J. Math. 207, 203–228 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Teräväinen, J., The Goldbach problem for primes that are sums of two squares plus one, Mathematika, 64(1), 20–70.  https://doi.org/10.1112/S0025579317000341 (to appear)
  21. 21.
    Wu, J.: Primes of the form \(p=1+m^2+n^2\) in short intervals. Proc. Am. Math. Soc. 126, 1–8 (1998)CrossRefGoogle Scholar
  22. 22.
    Zhou, B.-B.: The Chen primes contain arbitrarily long arithmetic progressions. Acta Arith. 138, 301–315 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Medical SchoolNanjing UniversityNanjingPeople’s Republic of China
  2. 2.School of Applied MathematicsNanjing University of Finance and EconomicsNanjingPeople’s Republic of China

Personalised recommendations