Existence and uniqueness of a renormalized solution of parabolic problems in Orlicz spaces

  • A. Aberqi
  • J. Bennouna
  • M. ElmassoudiEmail author
  • M. Hammoumi


In this work, we shall be concerned with the existence and uniqueness result to the nonlinear parabolic equations whose prototype is
$$\begin{aligned} \left\{ \begin{array}{lll} \displaystyle \frac{\partial b( u)}{\partial t} -\varDelta _{M}u - \text{ div } \left( \overline{c}(x,t)\overline{M}^{-1}M\left( \frac{\alpha _{0}}{\lambda }|b(u)|\right) \right) =f &{} \text {in}&{} Q_{T},\\ \displaystyle u(x,t)=0 &{} \text {on} &{} \partial \varOmega \times (0,T),\\ b(u)(t=0)=b(u_{0}) &{} \text {in} &{} \varOmega , \end{array} \right. \end{aligned}$$
where \( -\,\varDelta _{M}u{=}-\,\text{ div } ((1+|u|)^{2}Du\frac{\log (e+Du)}{|Du|})\), \(\overline{c}\in (L^{\infty }(Q_{T}))^{N}\) and \(M(t)= t\log (e+t)\) is an N-function. The data f and \(b(u_{0})\) in \(L^{1}(Q_T)\) and \(L^{1}(\varOmega )\).


Nonlinear parabolic equations Orlicz spaces Renormalized solutions Uniqueness 

Mathematics Subject Classification

Primary 47A15 Secondary 46A32 47D20 



  1. 1.
    Aberqi, A., Bennouna, J., Hammoumi, M.: Uniqueness of renormalized solutions for a class of parabolic equations. Ric. Math. 66(2), 629–644 (2017). MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Adams, R.: Sobolev Spaces. Academic Press, New York, NY (1975)zbMATHGoogle Scholar
  3. 3.
    Aharouch, L., Bennouna, J.: Existence and uniqueness of solutions of unilateral problems in Orlicz spaces. Nonlinear Anal. 72, 3553–3565 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Akdim, Y., Bennouna, J., Mekkour, M., Redwane, H.: Strongly nonlinear parabolic inequality in Orlicz spaces via a sequence of penalized equations. African Mathematical Union No. 03, 1–25 (2014)Google Scholar
  5. 5.
    Al-Hawmi, M., Benkirane, A., Hjiaj, H., Touzani, A.: Existence and uniqueness of entropy solution for some nonlinear elliptic unilateral problems in Musielak–Orlicz–Sobolev spaces. Ann. Univ. Craiova Math. Comput. Sci. Ser. 44(1), 1–20 (2017)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Antontsev, S., Shmarev, S.: Anisotropic parabolic equations with variable nonlinearity. Publ. Math. 53, 355–399 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Azroul, E., Redwane, H., Rhoudaf, M.: Existence of a renormalized solution for a class of nonlinear parabolic equations in Orlicz spaces. Port. Math. 66(1), 29–63 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Benilan, P., Boccardo, L., Gallouet, T., Gariepy, R., Pierre, M., Vazquez, J.: An \(L^{1}\)-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola Norm. Super. Pisa 22, 241–273 (1995)zbMATHGoogle Scholar
  9. 9.
    Blanchard, D., Murat, F.: Renormalized solution for nonlinear parabolic problems with \(L^{1}\)-data, existence and uniqueness. Proc. R. Soc. Edinb. Sect. A 127, 1137–1152 (1997)CrossRefzbMATHGoogle Scholar
  10. 10.
    Blanchard, D., Redwane, H.: Renormalized solutions for class of nonlinear evolution problems. J. Math. Pure 77, 117–151 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Blanchard, D., Murat, F., Redwane, H.: Existence and uniqueness of a renormalized solution for a fairly general class of nonlinear parabolic problems. J. Differ. Equ. 177, 331–374 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Blanchard, D., Guibé, O., Redwane, H.: Existence and uniqueness of a solution for a class of parabolic equations with unbounded nonlinearites. Commun. Pure Appl. Anal. 15(1), 197–217 (2016)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Brezis, H.: Analyse fonctionnelle. Masson, Paris (1987)zbMATHGoogle Scholar
  14. 14.
    Diperna, R.J., Lions, P.L.: On the Cauchy problem for the Boltzmann equations, global existence and weak stability. Ann. Math. 130, 321–366 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Dong, G., Fang, X.: Existence results for some nonlinear elliptic equations with measure data in Orlicz–Sobolev spaces. Bound. Value Probl. 54, 2015–18 (2015)MathSciNetGoogle Scholar
  16. 16.
    Elmahi, A., Meskine, D.: Strongly nonlinear parabolic equations with natural growth terms in Orlicz spaces. Nonlinear Anal. 60(1), 1–35 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Elmahi, A., Meskine, D.: Non-linear elliptic problems having natural growth and L1 data in Orlicz spaces. Ann. Mat. 184, 161–184 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Elmassoudi, M., Aberqi, A., Bennouna, J.: Nonlinear parabolic problem with lower order terms in Musielak–Orlicz spaces. ASTES J. 2(5), 109–123 (2017)CrossRefGoogle Scholar
  19. 19.
    Gossez, J.P.: Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) in creasing coefficients. Trans. Am. Math. Soc. 190, 163–205 (1974)CrossRefzbMATHGoogle Scholar
  20. 20.
    Gossez, J.P.: Some approximation properties in Orlicz-Sobolev spaces. Stud. Math. 74, 17–24 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Gossez, J.P.: A strongly non-linear elliptic problem in Orlicz–Sobolev spaces. Proc. Am. Math. Soc. Symp. Pure Math. 45, 455 (1986)CrossRefGoogle Scholar
  22. 22.
    Krasnosel’skiì, M.A., Rutickiì, Y.B.: Convex functions and Orlicz spaces, GITTL, Moscow, 1958, English trans., Internat. Monographs on Advanced Math. Phys., Hindustan, Delhi, Noordhoff, Groningen (1961)Google Scholar
  23. 23.
    Landes, R.: On the existence of weak solutions for quasilinear parabolic initial-boundary value problems. Proc. R. Soc. Edinb. Sect. A 89, 217–237 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Mukminov, F.K.: Uniqueness of the renormalized solutions to the Cauchy problem for an anisotropic parabolic equation. Ufa Math. J. 8(2), 44–57 (2016)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Mukminov, F.K.: Uniqueness of the renormalized solution of an elliptic–parabolic problem in anisotropic Sobolev–Orlicz spaces. Sb. Math. 208(8), 1187–1206 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Prignet, A.: Existence and uniqueness of entropy solutions of parabolic problems with \(L^{1}\) data. Nonlinear Anal. 28, 1943–1954 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Redwane, H.: Existence of a solution for a class of nonlinear parabolic systems. Electron. J. Qual. Theory Differ. Equ. 2, 1–19 (2010)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Royden, H.L.: Real Analysis, 3rd edn. Macmillan Publishing Company, New York (1988)zbMATHGoogle Scholar
  29. 29.
    Serrin, J.: Pathological solution of elliptic differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 18, 385–387 (1964)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire LISA, School of Mathematical SciencesSidi Mohammed Ben Abdellah UniversityAtlas FezMorocco
  2. 2.Laboratoire LAMA, FSDMSidi Mohammed Ben Abdellah UniversityAtlas FezMorocco

Personalised recommendations