Monatshefte für Mathematik

, Volume 186, Issue 3, pp 407–438 | Cite as

Optimal embeddings of ultradistributions into differential algebras

  • Andreas Debrouwere
  • Hans Vernaeve
  • Jasson Vindas


We construct embeddings of spaces of non-quasianalytic ultradistributions into differential algebras enjoying optimal properties in view of a Schwartz type impossibility result, also shown in this article. We develop microlocal analysis in these algebras consistent with the microlocal analysis in the corresponding spaces of ultradistributions.


Generalized functions Colombeau algebras Multiplication of ultradistributions Wave front sets Ultradifferentiable functions Denjoy–Carleman classes 

Mathematics Subject Classification

Primary 46F05 46F30 Secondary 35A18 


  1. 1.
    Aragona, J., Juriaans, S.O., Colombeau, J.-F.: Locally convex topological algebras of generalized functions: compactness and nuclearity in a nonlinear context. Trans. Am. Math. Soc. 367, 5399–5414 (2015)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bengel, G., Schapira, P.: Décomposition microlocale analytique des distributions. Ann. Inst. Fourier (Grenoble) 29, 101–124 (1979)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Benmeriem, K., Bouzar, C.: Generalized Gevrey ultradistributions. N. Y. J. Math. 15, 37–72 (2009)MathSciNetMATHGoogle Scholar
  4. 4.
    Benmeriem, K., Bouzar, C.: An algebra of generalized Roumieu ultradistributions. Rend. Sem. Mat. Univ. Politec. Torino 70, 101–109 (2012)MathSciNetMATHGoogle Scholar
  5. 5.
    Beurling, A.: Sur les intégrales de Fourier absolument convergentes et leur application à une transformation fonctionelle. In: IX Congr. Math. Scand., pp. 345–366. Helsingfors (1938)Google Scholar
  6. 6.
    Björck, G.: Linear partial differential operators and generalized distributions. Ark. Mat. 6, 351–407 (1966)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Braun, R.W.: An extension of Komatsu’s second structure theorem for ultradistributions. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 40, 411–417 (1993)MathSciNetMATHGoogle Scholar
  8. 8.
    Braun, R.W., Meise, R., Taylor, B.A.: Ultradifferentiable functions and Fourier analysis. Results Math. 17, 206–237 (1990)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Carmichael, R.D., Kamiński, A., Pilipović, S.: Boundary Values and Convolution in Ultradistribution Spaces. Series on Analysis, Applications and Computation, 1. World Scientific Publishing Co. Pte. Ltd., Hackensack (2007)MATHGoogle Scholar
  10. 10.
    Chen, W., Ditzian, Z.: Mixed and directional derivatives. Proc. Am. Math. Soc. 108, 177–185 (1990)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Cho, J., Kim, K.W.: Real version of Paley–Wiener–Schwartz theorem for ultradistributions with ultradifferentiable singular support. Bull. Korean Math. Soc. 36, 483–493 (1999)MathSciNetMATHGoogle Scholar
  12. 12.
    Ciorǎnescu, I., Zsidó, L.: \(\omega \)-ultradistributions and their applications to operator theory. In: Żelazko, W. (ed.) Spectral Theory (Warsaw, 1977), pp. 77–220. Banach Center Publ. 8, PWN, Warsaw (1982).Google Scholar
  13. 13.
    Colombeau, J.-F.: New Generalized Functions and Multiplication of Distributions. North-Holland Publishing Co., Amsterdam (1984)MATHGoogle Scholar
  14. 14.
    Colombeau, J.-F.: Elementary Introduction to New Generalized Functions. North-Holland Publishing Co, Amsterdam (1985)MATHGoogle Scholar
  15. 15.
    Dapić, N., Pilipović, S., Scarpalézos, D.: Microlocal analysis of Colombeau’s generalized functions: propagation of singularities. J. Anal. Math. 75, 51–66 (1998)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Debrouwere, A., Vindas, J.: Discrete characterizations of wave front sets of Fourier–Lebesgue and quasianalytic type. J. Math. Anal. Appl. 438, 889–908 (2016)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Delcroix, A., Hasler, M.F., Pilipović, S., Valmorin, V.: Embeddings of ultradistributions and periodic hyperfunctions in Colombeau type algebras through sequence spaces. Math. Proc. Camb. Philos. Soc. 137, 697–708 (2004)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Delcroix, A., Hasler, M.F., Pilipović, S., Valmorin, V.: Sequence spaces with exponent weights. Realizations of Colombeau type algebras. Diss. Math. 447, 56 (2007)MathSciNetMATHGoogle Scholar
  19. 19.
    Fernández, C., Galbis, A., Jornet, D.: Pseudodifferential operators of Beurling type and the wave front set. J. Math. Anal. Appl. 340, 1153–1170 (2008)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Garetto, C.: On hyperbolic equations and systems with non-regular time dependent coefficients. J. Differ. Equ. 259, 5846–5874 (2015)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Garetto, C., Ruzhansky, M.: Hyperbolic second order equations with non-regular time dependent coefficients. Arch. Ration. Mech. Anal. 217, 113–154 (2015)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Garetto, C., Vernaeve, H.: Hilbert \(\tilde{{\mathbb{C}}}\)-modules: structural properties and applications to variational problems. Trans. Am. Math. Soc. 363, 2047–2090 (2011)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Gramchev, T.: Nonlinear maps in spaces of distributions. Math. Z. 209, 101–114 (1992)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Grosser, M., Kunzinger, M., Oberguggenberger, M., Steinbauer, R.: Geometric Theory of Generalized Functions. Kluwer Academic Publishers, Dordrecht (2001)MATHGoogle Scholar
  25. 25.
    Hörmander, L.: The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis, 2nd edn. Grundlehren der Mathematischen Wissenschaften 256. Springer, Berlin (1990)Google Scholar
  26. 26.
    Hörmann, G.: Hölder–Zygmund regularity in algebras of generalized functions. Z. Anal. Anwend. 23, 139–165 (2004)CrossRefMATHGoogle Scholar
  27. 27.
    Hörmann, G., de Hoop, M.V.: Microlocal analysis and global solutions of some hyperbolic equations with discontinuous coefficients. Acta Appl. Math. 67, 173–224 (2001)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Hörmann, G., Oberguggenberger, M., Pilipović, S.: Microlocal hypoellipticity of linear partial differential operators with generalized functions as coefficients. Trans. Am. Math. Soc. 358, 3363–3383 (2006)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Kolmogorov, A.N.: On inequalities between the upper bounds of successive derivatives of an arbitrary function on an infinite interval (translation). In: American Mathematical Society Translations, Series 1. Number Theory and Analysis, vol. 2, pp. 233–243. American Mathematical Society, Providence (1962)Google Scholar
  30. 30.
    Komatsu, H.: Ultradistributions I. Structure theorems and a characterization. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 20, 25–105 (1973)MathSciNetMATHGoogle Scholar
  31. 31.
    Komatsu, H.: Relative cohomology of sheaves of solutions of differential equations. In: Komatsu, H. (ed.) Hyperfunctions and Pseudo-Differential Equations. Lecture Notes in Mathematics, vol. 287, pp. 192–261. Springer, Berlin (1973)CrossRefGoogle Scholar
  32. 32.
    Komatsu, H.: Ultradistributions. III. Vector-valued ultradistributions and the theory of kernels. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29, 653–717 (1982)MathSciNetMATHGoogle Scholar
  33. 33.
    Komatsu, H.: Microlocal analysis in Gevrey classes and in complex domains. In: Cattabriga, L., Rodino, L. (eds.) Microlocal Analysis and Applications. Lecture Notes in Mathematics, vol. 1495, pp. 161–236. Springer, Berlin (1991)CrossRefGoogle Scholar
  34. 34.
    Kunzinger, M., Steinbauer, R.: Generalized pseudo-Riemannian geometry. Trans. Am. Math. Soc. 354, 4179–4199 (2002)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Nedeljkov, M., Pilipović, S., Scarpalézos, D.: The Linear Theory of Colombeau Generalized Functions, Pitman Research Notes in Mathematics Series, vol. 385. Longman, Harlow (1998)MATHGoogle Scholar
  36. 36.
    Oberguggenberger, M.: Multiplication of Distributions and Applications to Partial Differential Equations. Pitman Research Notes in Mathematics, vol. 259. Longman Scientific and Technical, New York (1992)MATHGoogle Scholar
  37. 37.
    Oberguggenberger, M., Pilipović, S., Scarpalézos, D.: Local properties of Colombeau generalized functions. Math. Nachr. 256, 88–99 (2003)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Pilipović, S.: Characterization of bounded sets in spaces of ultradistributions. Proc. Am. Math. Soc. 120, 1191–1206 (1994)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Pilipović, S.: Microlocal analysis of ultradistributions. Proc. Am. Math. Soc. 126, 105–113 (1998)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Pilipović, S., Scarpalézos, D.: Colombeau generalized ultradistributions. Math. Proc. Camb. Philos. Soc. 130, 541–553 (2001)MathSciNetMATHGoogle Scholar
  41. 41.
    Pilipović, S., Scarpalezos, D.: Regularity properties of distributions and ultradistributions. Proc. Am. Math. Soc. 129, 3531–3537 (2001)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Pilipović, S., Scarpalézos, D., Vindas, J.: Regularity properties of distributions through sequences of functions. Monatshefte Math. 170, 227–237 (2013)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Roumieu, C.: Sur quelques extensions de la notion de distribution. Ann. Sci. École Norm. Sup. Sér 3(77), 41–121 (1960)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Schwartz, L.: Sur l’impossibilité de la multiplication des distributions. C. R. Acad. Sci. Paris 239, 847–848 (1954)MathSciNetMATHGoogle Scholar
  45. 45.
    Takiguchi, T.: Structure of quasi-analytic ultradistributions. Publ. Res. Inst. Math. Sci. 43, 425–442 (2007)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.Department of MathematicsGhent UniversityGhentBelgium

Personalised recommendations