Monatshefte für Mathematik

, Volume 184, Issue 2, pp 245–272 | Cite as

Complex interpolation of grand Lebesgue spaces

  • Denny Ivanal Hakim
  • Mitsuo Izuki
  • Yoshihiro Sawano


The aim of this paper is to obtain the description of the first and second complex interpolations of grand Lebesgue spaces. We also investigate the complex interpolation of closed subspaces satisfying the lattice property.


Grand Lebesgue spaces Complex interpolation 

Mathematics Subject Classification

42B35 46B26 46B70 


  1. 1.
    Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. Grundlehren der Mathematischen Wissenschaften, No. 223. Springer, Berlin (1976)Google Scholar
  2. 2.
    Calderón, A.P.: Intermediate spaces and interpolation, the complex method. Stud. Math. 24, 113–190 (1964)MathSciNetMATHGoogle Scholar
  3. 3.
    Fiorenza, A.: Duality and reflexivity in grand Lebesgue spaces. Collect. Math. 51, 131–148 (2000)MathSciNetMATHGoogle Scholar
  4. 4.
    Greco, L., Iwaniec, T., Sbordone, C.: Inverting the \(p\)-harmonic operator. Manuscr. Math. 92, 249–258 (1997)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Fiorenza, A., Gupta, B., Jain, P.: The maximal theorem in weighted grand Lebesgue spaces. Stud. Math. 188(2), 123–133 (2008)CrossRefMATHGoogle Scholar
  6. 6.
    Hakim, D.I., Sawano, Y.: Interpolation of generalized Morrey spaces. Rev. Math. Complut. 29(2), 295–340 (2016)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Hakim, D.I., Sawano, Y.: Calderón’s First and Second Complex Interpolations of Closed Subspaces of Morrey Spaces. J. Fourier Anal. Appl. (2016). doi: 10.1007/s00041-016-9503-9
  8. 8.
    Iwaniec, T., Sbordone, C.: On the integrability of the Jacobian under minimal hypotheses. Arch. Rational Mech. Anal. 119(2), 129–143 (1992)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Kokilashvili, V., Meskhi, A., Rafeiro, H., Samko, S.: Integral Operators in Non-standard Function Spaces: Variable Exponent Hölder, Morrey–Campanato and Grand Spaces, vol. 2. Springer, Heidelberg (2016)MATHGoogle Scholar
  10. 10.
    Kozono, H., Yamazaki, M.: Semilinear heat equations and the Navier–Stokes equation with distributions in new function spaces as initial data. Commun. PDE 19, 959–1014 (1994)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Lemarié-Rieusset, P.G.: Multipliers and Morrey spaces. Potential Anal. 38, 741–752 (2013)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Lemarié-Rieusset, P.G.: Erratum to: Multipliers and Morrey spaces. Potential Anal. 41, 1359–1362 (2014)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Lu, Y., Yang, D., Yuan, W.: Interpolation of Morrey spaces on metric measure spaces. Canad. Math. Bull. 57, 598–608 (2014)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Mazzucato, A.L.: Decomposition of Besov–Morrey spaces. Harmonic analysis at Mount Holyoke (South Hadley, MA, 2001), 279–294, Contemp. Math. 320, Am. Math. Soc., Providence, RI (2003)Google Scholar
  15. 15.
    Mazzucato, A.L.: Besov–Morrey spaces: function space theory and applications to non-linear PDE. Trans. Am. Math. Soc. 355(4), 1297–1364 (2003)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Najafov, A.M.: Some properties of functions from the intersection of Besov–Morrey type spaces with dominant mixed derivatives. Proc. A. Razmadze Math. Inst. 139, 71–82 (2005)MathSciNetMATHGoogle Scholar
  17. 17.
    Sawano, Y., Tanaka, H.: Decompositions of Besov–Morrey spaces and Triebel–Lizorkin–Morrey spaces. Math. Z. 257(4), 871–905 (2007)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Sawano, Y., Tanaka, H.: Besov–Morrey spaces and Triebel–Lizorkin–Morrey spaces for non-doubling measures. Math. Nachr. 282(12), 1788–1810 (2009)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Sawano, Y., Tanaka, H.: The Fatou property of block spaces. J. Math. Sci. Univ. Tokyo 22, 663–683 (2015)MathSciNetMATHGoogle Scholar
  20. 20.
    Sestakov, V.A.: On complex interpolation of Banach space of measurable functions. Vestn. Leningr. 19(4), 64–68 (1974)MathSciNetGoogle Scholar
  21. 21.
    Tang, L., Xu, J.: Some properties of Morrey type Besov–Triebel spaces. Math. Nachr. 278, 904–917 (2005)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Triebel, H.: Hybrid Function Spaces, Heat and Navier–Stokes Equations. Tracts in Mathematics 24, European Mathematical Society (2015)Google Scholar
  23. 23.
    Yang, D., Yuan, W.: A new class of function spaces connecting Triebel–Lizorkin spaces and \(Q\) spaces. J. Funct. Anal. 255, 2760–2809 (2008)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Yang, D., Yuan, W.: New Besov-type spaces and Triebel–Lizorkin-type spaces including \(Q\) spaces. Math. Z. 265, 451–480 (2010)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Yang, D., Yuan, W.: Dual properties of Triebel–Lizorkin-type spaces and their applications. Z. Anal. Anwend. 30, 29–58 (2011)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Yuan, W., Sickel, W., Yang, D.: Morrey and Campanato meet Besov, Lizorkin and Triebel. Lecture Notes in Mathematics, vol. 2005. Springer, Berlin (2010)Google Scholar
  27. 27.
    Yuan, W., Sickel, W., Yang, D.: Interpolation of Morrey–Campanato and related smoothness spaces. Sci. China Math. 58(9), 1835–1908 (2015)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • Denny Ivanal Hakim
    • 1
  • Mitsuo Izuki
    • 2
  • Yoshihiro Sawano
    • 1
  1. 1.Department of Mathematics and Information SciencesTokyo Metropolitan UniversityHachiojiJapan
  2. 2.Department of Mathematics Education, Faculty of EducationOkayama UniversityOkayamaJapan

Personalised recommendations