Advertisement

Monatshefte für Mathematik

, Volume 181, Issue 1, pp 35–62 | Cite as

Finite generation of congruence preserving functions

  • Erhard AichingerEmail author
  • Marijana Lazić
  • Nebojša Mudrinski
Article

Abstract

We investigate when the clone of congruence preserving functions is finitely generated. We obtain a full description for all finite p-groups, and for all finite algebras with Mal’cev term and simple congruence lattice. The characterization for p-groups allows a generalization to a large class of expansions of groups.

Keywords

Congruence preserving function Expanded group Clone  Finite generation 

Mathematics Subject Classification

08A40 08A30 

Notes

Acknowledgments

We thank J. Farley, K. Kaarli, and C. Pech for fruitful discussions on parts of this paper, and the referee for numerous valuable suggestions.

References

  1. 1.
    Aichinger, E.: On Hagemann’s and Herrmann’s characterization of strictly affine complete algebras. Algebra Universalis 44, 105–121 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aichinger, E.: \(2\)-affine complete algebras need not be affine complete. Algebra Universalis 47(4), 425–434 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Aichinger, E.: The near-ring of congruence preserving functions on an expanded group. J. Pure Appl. Algebra 205, 74–93 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Aichinger, E.: The polynomial functions of certain algebras that are simple modulo their center. In: Dorfer G, Eigenthaler G, Goldstern M, Müller WB, Winkler R (eds.) Contributions to General Algebra, vol. 17, pp. 9–24. Heyn, Klagenfurt (2006)Google Scholar
  5. 5.
    Aichinger, E., Mudrinski, N.: Types of polynomial completeness of expanded groups. Algebra Universalis 60(3), 309–343 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Aichinger, E., Mudrinski, N.: Some applications of higher commutators in Mal’cev algebras. Algebra Universalis 63(4), 367–403 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Aichinger, E., Mudrinski, N.: Sequences of commutator operations. Order 30(3), 859–867 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bergman, C.: Universal algebra. Fundamentals and selected topics. Pure and Applied Mathematics (Boca Raton), 301,CRC Press, Boca Raton, FL (2012)Google Scholar
  9. 9.
    Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Springer, New York Heidelberg Berlin (1981)CrossRefzbMATHGoogle Scholar
  10. 10.
    Bulatov, A.: On the number of finite Mal’tsev algebras. In: Chajda I, Droste M, Eigenthaler G, Müller WB, Pöschel R (eds.) Contributions to General Algebra, vol. 13 (Velké Karlovice,1999/Dresden, 2000), pp. 41–54. Heyn, Klagenfurt (2001)Google Scholar
  11. 11.
    Finkbeiner, D.T.: Irreducible congruence relations on lattices. Pac. J. Math. 10, 813–821 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Freese, R., McKenzie, R.N.: Commutator Theory for Congruence Modular Varieties. London Math. Soc. Lecture Note Ser., vol. 125. Cambridge University Press (1987)Google Scholar
  13. 13.
    Grätzer, G.: General Lattice Theory, 2nd edn. Birkhäuser Verlag, Basel (1998). New appendices by the author with B. A. Davey, R. Freese, B. Ganter, M. Greferath, P. Jipsen, H. A. Priestley, H. Rose, E. T. Schmidt, S. E. Schmidt, F. Wehrung and R. WilleGoogle Scholar
  14. 14.
    Hobby, D., McKenzie, R.: The structure of finite algebras. Contemporary Mathematics, vol. 76. American Mathematical Society, Providence, RI (1988)Google Scholar
  15. 15.
    Kearnes, K.A.: Congruence modular varieties with small free spectra. Algebra Universalis 42(3), 165–181 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kaarli, K., Pixley, A.F.: Polynomial Completeness in Algebraic Systems. Chapman & Hall / CRC, Boca Raton (2001)zbMATHGoogle Scholar
  17. 17.
    Kurosh, A.G.: Lectures on General Algebra. Chelsea, New York (1965)zbMATHGoogle Scholar
  18. 18.
    McKenzie, R.N., McNulty, G.F., Taylor, W.F.: Algebras, Lattices, Varieties, vol. I. Wadsworth & Brooks/Cole Advanced Books & Software, Monterey (1987)zbMATHGoogle Scholar
  19. 19.
    Nöbauer, W.: Über die affin vollständigen, endlich erzeugbaren Moduln. Monatshefte für Mathematik 82, 187–198 (1976)CrossRefzbMATHGoogle Scholar
  20. 20.
    Pöschel, R., Kalužnin, L.A.: Funktionen- und Relationenalgebren, Mathematische Monographien, vol. 15. VEB Deutscher Verlag der Wissenschaften, Berlin (1979)CrossRefGoogle Scholar
  21. 21.
    Quackenbush, R., Wolk, B.: Strong representation of congruence lattices. Algebra Universalis 1, 165–166 (1971/72)Google Scholar
  22. 22.
    Robinson, D.J.S.: A Course in the Theory of Groups, 2nd edn. Graduate Texts in Mathematics, vol. 80, Springer-Verlag, New York (1996)Google Scholar
  23. 23.
    The GAP Group: GAP—Groups, Algorithms, and Programming, Version 4.5.6 (2012)Google Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Erhard Aichinger
    • 1
    Email author
  • Marijana Lazić
    • 1
    • 2
  • Nebojša Mudrinski
    • 1
    • 2
  1. 1.Institut für AlgebraJohannes Kepler Universität LinzLinzAustria
  2. 2.Department of Mathematics and Informatics, Faculty of SciencesUniversity of Novi SadNovi SadSerbia

Personalised recommendations