Monatshefte für Mathematik

, Volume 179, Issue 2, pp 305–320 | Cite as

Quasi-Einstein manifolds endowed with a parallel vector field

  • João F. Silva FilhoEmail author


The main of this article is to investigate quasi-Einstein manifolds endowed with a parallel vector field. Here, we obtain some characterizations for this class of manifolds under this condition. Moreover, we prove a rigidity result for quasi-Einstein manifolds endowed with a parallel vector field.


Warped products Parallel vector fields Einstein metrics 

Mathematical Subject Classification

Primary 53C25 53C20 53C21 Secondary 53C65 



The author is grateful to E. Ribeiro Jr for many helpful conversations during the elaboration of this paper. Moreover, the author want to thank the referees for their careful reading and helpful suggestions.


  1. 1.
    Amur, K., Hedge, V.S.: Conformality of Riemannian manifolds to spheres. J. Differ. Geom. 9, 571–576 (1974)zbMATHGoogle Scholar
  2. 2.
    Aquino, C., Barros, A., Ribeiro, E., Jr.: Some applications of the Hodge-de Rham decomposition to Ricci solitons. Results Math. 60, 235-246 (2011)Google Scholar
  3. 3.
    Baird, P., Danielo, L.: Three-dimensional Ricci solitons which project to surfaces. J. Reine Angew. Math. 608, 65–71 (2007)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Bakry, D., Leudox, M.: Sobolev inequalities and Myers’s diameter theorem for an abstract Markov generator. Duke Math. J. 85(1), 253–270 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Barros, A., Batista, R., Ribeiro, E., Jr.: Bounds on volume growth of geodesic balls for Einstein warped products. Proc. Am. Math. Soc. 143, 4415-4422 (2015)Google Scholar
  6. 6.
    Barros, A., Ribeiro, E., Jr.: Integral formulae on quasi-Einstein manifolds and applications. Glasg. Math. J. 54, 213-223 (2012)Google Scholar
  7. 7.
    Barros, A., Ribeiro, E., Jr., Silva Filho, J.: Uniqueness of quasi-Einstein metrics on 3-dimensional homogeneous manifolds. Differ. Geom. Appl. 35, 60-73 (2014)Google Scholar
  8. 8.
    Besse, A.: Einstein Manifolds. Springer, New York (2008)zbMATHGoogle Scholar
  9. 9.
    Cao, H.-D.: Recent progress on Ricci soliton. Adv. Lect. Math. (ALM) 11, 1–38 (2009)Google Scholar
  10. 10.
    Case, J., Shu, Y., Wei, G.: Rigity of quasi-Einstein metrics. Differ. Geom. Appl. 29, 93–100 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Castro, I., Montealegre, C.R., Urbano, F.: Closed conformal vector fields and lagragian submanifolds. Pac. J. Math. Complex Space Forms 199, 269–302 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Cheeger, J., Colding, T.: Lower bounds on Ricci curvature and the almost rigidity of warped products. Ann. Math. 144(1), 189–237 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Chen, Z., Liang, Z. and Zhu, F.: Non-trivial \(m\)-quasi-Einstein metrics on simple Lie group (2013). arXiv: 1310.8035v1 [math.DG]
  14. 14.
    Chen, Z., Liang, Z. and Yi, F.: Non-trivial \(m\)-quasi-Einstein metrics on quadratic Lie group )2014). arXiv:1401.1922v1 [math.DG]
  15. 15.
    Corvino, J.: Scalar curvature deformations and a gluing construction for the Einstein constraint equations. Commun. Math. Phys. 214, 137–189 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    De Rham, G.: Sur la réeducibilité. Coment. Math. Helv. 26, 328–344 (1952)zbMATHCrossRefGoogle Scholar
  17. 17.
    Di Cerbo, L.: Generic properties of homogeneous Ricci solitons. Adv. Geom. 14, 225–237 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    He, C., Petersen, P., Wylie, W.: On the classification of warped product Einstein metrics. Commun. Anal. Geom. 20, 271–312 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Kim, D.S., Kim, Y.H.: Compact Einstein warped product spaces with nonpositive scalar curvature. Proc. Am. Math. Soc. 131, 2573–2576 (2003)zbMATHCrossRefGoogle Scholar
  20. 20.
    Limoncu, M.: Modifications of the Ricci tensor and applications. Arch. Math. 95, 191–199 (2010)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Obata, M.: Conformal transformations of Riemannian manifolds. J. Differ. Geom. 4, 311–333 (1970)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Obata, M., Yanno, K.: Conformal changes of Riemannian metrics. J. Differ. Geom. 4, 53–72 (1970)zbMATHGoogle Scholar
  23. 23.
    Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. Preprint (2002). Available at arXiv:0211.159v1 [math.DG], 2002
  24. 24.
    Petersen, P., Wylie, W.: On gradient Ricci Solitons with symmetry. Proc. Am. Math. Soc. 137, 2085–2092 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Qian, Z.: Estimates for weighted volumes and applications. Q. J. Math. 48(190), 235–242 (1997)zbMATHCrossRefGoogle Scholar
  26. 26.
    Ribeiro Jr, E., Silva Filho, J.F.: Explicit description of three-dimensional homogeneous Ricci solitons. Publ. Math. 85, 31–46 (2014)Google Scholar
  27. 27.
    Ros, A., Urbano, F.: Lagrangian submanifolds of \(\mathbb{C}^n\) with conformal Maslov form and the Whitney sphere. J. Math. Soc. Japan 50, 203–226 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Suyama, Y., Tsukamoto, Y.: Riemannian manifolds admitting a certain conformal transformation group. J. Differ. Geom. 5, 415–426 (1971)zbMATHMathSciNetGoogle Scholar
  29. 29.
    Tanno, S., Webber, W.: Closed conformal vector fields. J. Differ. Geom. 3, 361–366 (1969)zbMATHGoogle Scholar
  30. 30.
    Tashiro, Y.: Complete Riemannian manifolds and some vector fields. Trans. Am. Math. Soc. 117, 251–275 (1965)zbMATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Wang, L.: On noncompact quasi-Einstein metrics. Pac. J. Math. 254, 449–464 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.UNILAB-Instituto de Ciências exatas e da Natureza, Campus dos PalmaresAcarapeBrazil

Personalised recommendations