Advertisement

Monatshefte für Mathematik

, Volume 180, Issue 1, pp 1–37 | Cite as

Characterization of regularity for a connected Abelian action

  • Didier Arnal
  • Bradley CurreyEmail author
  • Vignon Oussa
Article

Abstract

Let V be a finite dimensional real vector space, let \(\mathfrak g\) be the real span of a finite set of commuting endomorphisms of V, and \(G = \exp \mathfrak g\). We study the orbit structure in elements of a finite partition of V into explicit G-invariant connected sets. In particular, we prove that either there is an open conull G-invariant subset \(\Omega \) of V in which every G-orbit is regular, or there is a G-invariant, conull, \(\mathcal G_\delta \) subset of V in which every orbit is not regular. We present an explicit computable necessary and sufficient condition for almost everywhere regularity. Finally in the case of regularity we construct an explicit topological cross-section for the orbits in \(\Omega \).

Keywords

Regular and not regular orbits Lie algebra roots Linear Lie group action 

Mathematics Subject Classification

57Sxx 22Exx 22E25 22E27 17B45 17B08 58E40 

Notes

Acknowledgments

We thank the referee for a number of helpful suggestions. The second author would like to thank the Université de Bourgogne for their hospitality during his stay.

References

  1. 1.
    Arnal, D., Currey, B., Dali, B.: Canonical coordinates for a class of solvable groups. Monat. Math. 166(1), 19–55 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arnal, D., Currey, B., Dali, B., Oussa, V.: Regularity of linear abelian actions. Contemp. Math. 603, 89–109 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bernat, P., Conze, N., Duflo, M., Lévy-Nahas, M., Rais, M., Renouard, P., Vergne, M.: Représentations des groupes de Lie résolubles. Monographies de la S.M.F, Dunod (Paris) (1972)zbMATHGoogle Scholar
  4. 4.
    Bochnak, J., Coste, M., Roy, M.-F.: Géométrie algébrique réelle. Springer, Berlin (1987)zbMATHGoogle Scholar
  5. 5.
    Bruna, J., Cufi, J., Führ, H., Miró, M.: Characterizing abelian admissible groups. J. Geom. Anal. 25, 1045–1074 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dali, B.: Parametrization of coadjoint orbits of \({\mathbb{R}}^n\rtimes {\mathbb{R}}\). J. Lie Theory No. 18, 45–66 (2008)Google Scholar
  7. 7.
    Effros, E.: Transformation groups and \(C^*\)-algebras. Ann. Math. 81(1), 38–55 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Führ, H.: Abstract Harmonic Analysis of Continuous Wavelet Transforms, Lecture Notes in Mathematics, vol. 1863. Springer, Berlin (2005)Google Scholar
  9. 9.
    Führ, H.: Admissible vectors for the regular representation. Proc. Am. Math. Soc. 130(10), 2959–2970 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Führ, H.: Generalized Calderon conditions and regular orbit spaces. Colloq. Math. 120, 103–126 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Glimm, J.: Locally compact transformation groups. Trans. Am. Math. Soc. 101(1), 124–138 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gröchenig, K., Kaniuth, E., Taylor, K.F.: Compact open sets in duals and projections in \(L^1\)-algebras of certain semi-direct product groups. J. Lond. Math. Soc. 111, 545–556 (1996)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Kaniuth, E., Taylor, K.F.: Minimal projections in \(L^1\)-algebras and open points in the dual spaces of semi-direct product groups. Math. Proc. Camb. Philos. Soc. 53, 141–157 (1992)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Laugasen, R., Weaver, N., Weiss, G., Wilson, E.N.: A characterization of the higher dimensional groups associated with continuous wavelets. J. Geom. Anal. 12, 89–102 (2002)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Larson, D., Schulz, E., Speegle, D., Taylor, K.L.: Explicit cross-sections of singly-generated group actions. In: Heil, C. (ed.) Harmonic Analysis and Applications, pp. 209-230. Birkhauser, Basel (2006)Google Scholar
  16. 16.
    Varadarajan, V.S.: Lie Groups. Lie Algebras and Their Representations. Springer, Berlin (1984)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.Inst. de Mathematiques de Bourgogne, UMR CNRS 5584Université de BourgogneDijonFrance
  2. 2.Department of Mathematics and Computer ScienceSt. Louis UniversitySt. LouisUSA
  3. 3.Department of MathematicsBridgewater State UniversityBridgewaterUSA

Personalised recommendations