Advertisement

Monatshefte für Mathematik

, Volume 181, Issue 1, pp 63–70 | Cite as

On finite p-nilpotent groups

  • Adolfo Ballester-BolinchesEmail author
  • Xiuyun Guo
  • Yangming Li
  • Ning Su
Article
  • 326 Downloads

Abstract

In this paper the structure of a minimal counterexample among the non-p-nilpotent groups having p-nilpotent p-Sylow normalisers is analysed. Several p-nilpotency criteria and many earlier results follow from our main theorem.

Keywords

Finite groups p-nilpotency Minimal subgroups Sylow normalisers 

Mathematics Subject Classification

20D10 20D20 

Notes

Acknowledgments

The first author has been supported by Project NSFC (No. 11271085) and by the Grant MTM2014-54707-C3-1-P from the Ministerio de Economía y Competitividad of Spain. The second author has been supported by Project NSFC (No. 11371237). The research of the third author have been supported by projects NSF of Guangdong (S2011010004447) and Special Project for the Subject Build of High Education of Guandong Province (2012KJCX0081), and NSFC (No. 11271085). The fourth author have been supported by the project NSFC (No. 11401597).

References

  1. 1.
    Asaad, M.: On \(p\)-nilpotence of finite groups. J. Algebra 277, 157–164 (2004). doi: 10.1016/j.jalgebra.2003.12.030 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ballester-Bolinches, A., Esteban-Romero, R., Asaad, M.: Products of finite groups. In: De Gruyter Expositions in Mathematics, vol. 53. Walter de Gruyter, Berlin (2010). doi: 10.1515/9783110220612
  3. 3.
    Ballester-Bolinches, A., Esteban-Romero, R., Ezquerro, L.M.: On the \(p\)-length of some finite \(p\)-soluble groups. Isr. J. Math. 204(1), 359–371 (2014). doi: 10.1007/s11856-014-1095-y MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ballester-Bolinches, A., Guo, X.: Some results on \(p\)-nilpotence and solubility of finite groups. J. Algebra 228(2), 491–496 (2000). doi: 10.1006/jabr.1999.8274 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ballester-Bolinches, A., Pedraza-Aguilera, M.C.: On minimal subgroups of finite groups. Acta Math. Hung. 73(4), 335–342 (1996). doi: 10.1007/BF00052909 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Doerk, K., Hawkes, T.: Finite soluble groups. In: De Gruyter Expositions in Mathematics, vol. 4. Walter de Gruyter, Berlin, New York (1992). doi: 10.1515/9783110870138
  7. 7.
    González-Sánchez, J., Weigel, T.S.: Finite \(p\)-central groups of height \(k\). Isr. J. Math. 181, 125–143 (2011). doi: 10.1007/s11856-011-0006-8 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Guo, X., Shum, K.P.: \(p\)-nilpotence of finite groups and minimal subgroups. J. Algebra 270, 459–470 (2003). doi: 10.1016/j.jalgebra.2003.05.004 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Huppert, B.: Endliche Gruppen I, Grund. Math. Wiss., vol. 134. Springer, Berlin (1967)Google Scholar
  10. 10.
    Huppert, B., Blackburn, N.: Finite Groups II, Grund. Math. Wiss., vol. 242. Springer, Berlin (1982)Google Scholar
  11. 11.
    Zhang, G.: On two theorems of Thompson. Proc. Am. Math. Soc. 98(4), 579–582 (1986). doi: 10.1090/S0002-9939-1986-0861754-6 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Adolfo Ballester-Bolinches
    • 1
    • 2
    Email author
  • Xiuyun Guo
    • 3
  • Yangming Li
    • 1
  • Ning Su
    • 4
  1. 1.Department of MathematicsGuangdong University of EducationGuangzhouChina
  2. 2.Departament d’ÀlgebraUniversitat de ValènciaBurjassotSpain
  3. 3.Department of MathematicsShanghai UniversityShanghaiChina
  4. 4.Department of MathematicsSun Yat-sen UniversityGuangzhouChina

Personalised recommendations