Monatshefte für Mathematik

, Volume 178, Issue 3, pp 457–472

# Computation of Delta sets of numerical monoids

• J. I. García-García
• M. A. Moreno-Frías
• A. Vigneron-Tenorio
Article

## Abstract

Let $$\{a_1,\ldots ,a_p\}$$ be the minimal generating set of a numerical monoid S. For any $$s\in S$$, its Delta set is defined by $$\Delta (s)=\{l_{i}-l_{i-1}\mid i=2,\ldots ,k\}$$ where $$\{l_1<\dots <l_k\}$$ is the set $$\{\sum _{i=1}^px_i\mid s=\sum _{i=1}^px_ia_i \text { and } x_i\in \mathbb {N}\text { for all }i\}.$$ The Delta set of a numerical monoid S, denoted by $$\Delta (S)$$, is the union of all the sets $$\Delta (s)$$ with $$s\in S.$$ As proved in Chapman et al. (Aequationes Math. 77(3):273–279, 2009), there exists a bound N such that $$\Delta (S)$$ is the union of the sets $$\Delta (s)$$ with $$s\in S$$ and $$s<N$$. In this work, we obtain a sharpened bound and we present an algorithm for the computation of $$\Delta (S)$$ that requires only the factorizations of $$a_1$$ elements.

## Keywords

Delta set Non-unique factorization Numerical monoid Numerical semigroup

## Mathematics Subject Classification

Primary 20M14 Secondary 20M05

## References

1. 1.
Baginski, P., Chapman, S.T., Schaeffer, G.J.: On the delta set of a singular arithmetical congruence monoid. J. Théor. Nombres Bordeaux 20(1), 45–59 (2008)
2. 2.
Bowles, C., Chapman, S.T., Kaplan, N., Reiser, D.: On delta sets of numerical monoids. J. Algebra Appl. 5(5), 695–718 (2006)
3. 3.
Chapman, S.T., Daigle, J., Hoyer, R., Kaplan, N.: Delta sets of numerical monoids using nonminimal sets of generators. Comm. Algebra 38(7), 2622–2634 (2010)
4. 4.
Chapman, S.T., Garcia, P.A., Llena, D., Malyshev, A., Steinberg, D.: On the delta set and the Betti elements of a BF-monoid. Arab. J. Math. (Springer) 1(1), 53–61 (2012)
5. 5.
Chapman, S.T., Hoyer, R., Kaplan, N.: Delta sets of numerical monoids are eventually periodic. Aequationes Math. 77(3), 273–279 (2009)
6. 6.
Chapman S.T., Kaplan N., Lemburg T., Niles A., Zlogar C.: Shifts of generators and delta sets of numerical monoids. J. Comm. AlgebraGoogle Scholar
7. 7.
Chapman S.T., Malyshev A., Steinberg D.: On the delta set of a 3-generated numerical monoid, submitted, (online available at http://www.shsu.edu/stc008/Final3generateddeltasets)
8. 8.
Clausen, M., Fortenbacher, A.: Efficient solution of linear Diophantine equations. J. Symbolic Comput. 8(1–2), 201–216 (1989)
9. 9.
García-García J.I., Vigneron-Tenorio A.: DeltaSetsNumericalMonoids, a Mathematica package for computing the Delta sets of numerical semigroups. Online available at http://hdl.handle.net/10498/17446, (2015)
10. 10.
Geroldinger, A.: On the arithmetic of certain not integrally closed Noetherian integral domains. Comm. Algebra 19(2), 685–698 (1991)
11. 11.
Geroldinger A., Halter-Koch F.: Non-unique factorizations. Algebraic, combinatorial and analytic theory, Pure and Applied Mathematics (Boca Raton), 278. Chapman and Hall/CRC (2006)Google Scholar
12. 12.
Haarmann J., Kalauli A., Moran A., O’Neill C., Pelayo R.: Factorization properties of Leamer monoids, arXiv:1309.7477v1
13. 13.
Halter-Koch, F.: Arithmetical semigroups defined by congruences. Semigroup Forum 42(1), 59–62 (1991)
14. 14.
Rosales, J.C., García-Sánchez, P.A.: Finitely generated commutative monoids. Nova Science Publishers Inc, New York (1999)
15. 15.
Rosales, J.C., García-Sánchez, P.A.: Numerical semigroups, Developments in Mathematics, 20. Springer, New York (2009)