Monatshefte für Mathematik

, Volume 174, Issue 4, pp 599–616 | Cite as

On Kähler metrisability of two-dimensional complex projective structures

Article

Abstract

We derive necessary conditions for a complex projective structure on a complex surface to arise via the Levi-Civita connection of a (pseudo-)Kähler metric. Furthermore we show that the (pseudo-)Kähler metrics defined on some domain in the projective plane which are compatible with the standard complex projective structure are in one-to-one correspondence with the hermitian forms on \(\mathbb {C}^3\) whose rank is at least two. This is achieved by prolonging the relevant finite-type first order linear differential system to closed form. Along the way we derive the complex projective Weyl and Liouville curvature using the language of Cartan geometries.

Keywords

Complex projective geometry Cartan geometry Metrisability 

Mathematics Subject Classification (2010)

53A20 53B10 

References

  1. 1.
    Apostolov, V., Calderbank, D.M.J., Gauduchon, P.: Hamiltonian 2-forms in Kähler geometry. I. General theory. J. Differ. Geom. 73(3), 359–412 (2006). http://projecteuclid.org/getRecord?id=euclid.jdg/1146169934
  2. 2.
    Bolsinov, A., Matveev, V.S., Mettler, T., Rosemann, S.: Four-dimensional Kähler metrics admitting c-projective vector fields (2013). arXiv:1311.0517
  3. 3.
    Bryant, R., Dunajski, M., Eastwood, M.: Metrisability of two-dimensional projective structures. J. Differ. Geom. 83(3), 465–499 (2009)MATHMathSciNetGoogle Scholar
  4. 4.
    Bryant, R.L.: Notes on projective surfaces. Private manuscript in progress.Google Scholar
  5. 5.
    Calderbank, D.M.J.: Möbius structures and two-dimensional Einstein-Weyl geometry. J. Reine Angew. Math. 504, 37–53 (1998)MATHMathSciNetGoogle Scholar
  6. 6.
    Calderbank, D.M.J., Diemer, T.: Differential invariants and curved Bernstein-Gelfand-Gelfand sequences. J. Reine Angew. Math. 537, 67–103 (2001). doi:10.1515/crll.2001.059 MATHMathSciNetGoogle Scholar
  7. 7.
    Čap, A.: Correspondence spaces and twistor spaces for parabolic geometries. J. Reine Angew. Math. 582, 143–172 (2005). doi:10.1515/crll.2005.2005.582.143 MATHMathSciNetGoogle Scholar
  8. 8.
    Čap, A., Gover, A.R., Macbeth, H.R.: Einstein metrics in projective geometry. Geom. Dedicata 168(1), 235–244 (2014). doi:10.1007/s10711-013-9828-3 CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Čap, A., Slovák, J.: Parabolic Geometries. I, Mathematical Surveys and Monographs, Background and General Theory, vol. 154. American Mathematical Society, Providence (2009)Google Scholar
  10. 10.
    Čap, A., Slovák, J., Souček, V.: Bernstein-Gelfand-Gelfand sequences. Ann. Math. 154(1), 97–113 (2001). doi:10.2307/3062111 CrossRefMATHGoogle Scholar
  11. 11.
    Cartan, E.: Sur les variétés à connexion projective. Bull. Soc. Math. France 52, 205–241 (1924)MATHMathSciNetGoogle Scholar
  12. 12.
    Domašev, V.V., Mikeš, Ĭ.: On the theory of holomorphically projective mappings of Kählerian spaces. Mat. Zametki 23(2), 297–303 (1978)MathSciNetGoogle Scholar
  13. 13.
    Dumitrescu, S.: Connexions affines et projectives sur les surfaces complexes compactes. Math. Z. 264(2), 301–316 (2010). doi:10.1007/s00209-008-0465-8 CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Eastwood, M., Matveev, V.: Metric connections in projective differential geometry. In: Eastwood, M., Miller, W. (eds.) Symmetries and Overdetermined Systems of Partial Differential Equations, IMA Vol. Math. Appl., vol. 144, pp. 339–350. Springer, New York (2008). doi:10.1007/978-0-387-73831-4_16
  15. 15.
    Fedorova, A., Kiosak, V., Matveev, V.S., Rosemann, S.: The only Kähler manifold with degree of mobility at least 3 is \(({\mathbb{C}}P(n), g_{\text{ Fubini-Study }})\). Proc. Lond. Math. Soc. 105(1), 153–188 (2012)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Gover, A.R., Macbeth, H.R.: Detecting Einstein geodesics: Einstein metrics in projective and conformal geometry. Differ. Geom. Appl. 33, 44–69 (2014). doi:10.1016/j.difgeo.2013.10.011 CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Gunning, R.C.: On Uniformization of Complex Manifolds: the Role of Connections, Mathematical Notes, vol. 22. Princeton University Press, Princeton (1978)Google Scholar
  18. 18.
    Hammerl, M., Somberg, P., Souček, V., Šilhan, J.: On a new normalization for tractor covariant derivatives. J. Eur. Math. Soc. 14(6), 1859–1883 (2012). doi:10.4171/JEMS/349 CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Hitchin, N.J.: Complex manifolds and Einstein’s equations. In: Doebner, H-D., Palev, T.D. (eds.) Twistor Geometry and Nonlinear Systems (Primorsko, 1980), Lecture Notes in Math., vol. 970, pp. 73–99. Springer, Berlin (1982)Google Scholar
  20. 20.
    Hrdina, J.: Almost complex projective structures and their morphisms. Arch. Math. (Brno) 45(4), 255–264 (2009)MATHMathSciNetGoogle Scholar
  21. 21.
    Kiyohara, K., Topalov, P.: On Liouville integrability of \(h\)-projectively equivalent Kähler metrics. Proc. Am. Math. Soc. 139(1), 231–242 (2011). doi:10.1090/S0002-9939-2010-10576-2 CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Kobayashi, S., Ochiai, T.: Holomorphic projective structures on compact complex surfaces. Math. Ann. 249(1), 75–94 (1980). doi:10.1007/BF01387081 CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Kryński, W.: Webs and projective structures on a plane (2013). arXiv:1303.4912
  24. 24.
    Liouville, R.: Sur une classe d’équations différentielles, parmi lesquelles, en particulier, toutes celles des lignes géodésiques se trouvent comprises. Comptes Rendus Hebdomadaires des séances de l’Académie des Sciences 105, 1062–1064 (1887)Google Scholar
  25. 25.
    Liouville, R.: Sur les invariants de certaines équations différentielles et sur leurs applications. J. Ecol. Polytech. 59, 7–76 (1889)Google Scholar
  26. 26.
    Matveev, V.S., Rosemann, S.: Proof of the Yano-Obata conjecture for h-projective transformations. J. Differ. Geom. 92(2), 221–261 (2012)MATHMathSciNetGoogle Scholar
  27. 27.
    McKay, B.: Characteristic forms of complex Cartan geometries. Adv. Geom. 11(1), 139–168 (2011). doi:10.1515/ADVGEOM.2010.044 CrossRefMathSciNetGoogle Scholar
  28. 28.
    Mettler, T.: Reduction of \(\beta \)-integrable 2-Segre structures. Commun. Anal. Geom. 21(2), 331–353 (2013)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Mettler, T.: Weyl metrisability of two-dimensional projective structures. Math. Proc. Cambridge Philos. Soc. 156(1), 99–113 (2014). doi:10.1017/S0305004113000522 CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Mikeš, J.: Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci. 78(3), 311–333 (1996)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Mikeš, J.: Holomorphically projective mappings and their generalizations. J. Math. Sci. (New York) 89(3), 1334–1353 (1998). doi:10.1007/BF02414875 CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Molzon, R., Mortensen, K.P.: The Schwarzian derivative for maps between manifolds with complex projective connections. Trans. Am. Math. Soc. 348(8), 3015–3036 (1996). doi:10.1090/S0002-9947-96-01590-5 CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Nurowski, P.: Projective versus metric structures. J. Geom. Phys. 62(3), 657–674 (2012). doi:10.1016/j.geomphys.2011.04.011 CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Ochiai, T.: Geometry associated with semisimple flat homogeneous spaces. Trans. Am. Math. Soc. 152, 159–193 (1970)CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Ōtsuki, T., Tashiro, Y.: On curves in Kaehlerian spaces. Math. J. Okayama Univ. 4, 57–78 (1954)MATHMathSciNetGoogle Scholar
  36. 36.
    Randall, M.: Local obstructions to projective surfaces admitting skew-symmetric Ricci tensor. J. Geom. Phys. 76, 192–199 (2014). doi:10.1016/j.geomphys.2013.10.019 CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    Tashiro, Y.: On a holomorphically projective correspondence in an almost complex space. Math. J. Okayama Univ. 6, 147–152 (1957)MATHMathSciNetGoogle Scholar
  38. 38.
    Thomas, T.Y.: On the projective and equi-projective geometries of paths. Proc. Nat. Acad. Sci. 11, 199–203 (1925). doi:10.1073/pnas.11.4.199 CrossRefMATHGoogle Scholar
  39. 39.
    Weyl, H.: Zur Infinitesimalgeometrie: Einordnung der projektiven und der konformen Auffassung. Göttingen Nachrichten, pp. 99–112 (1921)Google Scholar
  40. 40.
    Yoshimatsu, Y.: H-projective connections and H-projective transformations. Osaka J. Math. 15(2), 435–459 (1978)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.Department of MathematicsETH ZürichZurichSwitzerland

Personalised recommendations