Monatshefte für Mathematik

, Volume 176, Issue 4, pp 497–502 | Cite as

On \(p\)-nilpotency of hyperfinite groups

  • A. Ballester-Bolinches
  • S. Camp-Mora
  • F. Spagnuolo


Let \(p\) be a prime. We say that class \(\fancyscript{X}\) of hyperfinite \(p\)-groups determines\(p\)-nilpotency locally if every finite group \(G\) with a Sylow \(p\)-subgroup \(P\) in \(\fancyscript{X}\) is \(p\)-nilpotent if and only if \({{\mathrm{N}}}_{G}(P)\) is \(p\)-nilpotent. The results of this paper improve a recent result of Kurdachenko and Otal and show that if a hyperfinite group \(G\) has a pronormal Sylow \(p\)-subgroup in \(\fancyscript{X}\), then \(G\) is \(p\)-nilpotent if and only if \({{\mathrm{N}}}_G(P)\) is \(p\)-nilpotent provided that \(\fancyscript{X}\) is closed under taking subgroups and epimorphic images. If \(\fancyscript{X}\) is not closed under taking epimorphic images, we have to impose local \(p\)-solubility to \(G\). In this case, the hypothesis of pronormality can be removed.


Locally finite group Hyperfinite group \(p\)-Nilpotency 

Mathematics Subject Classification (2010)

20E15 20F19 20F22 


  1. 1.
    Dixon, M.R.: Sylow Theory, Formations, and Fitting Classes in Locally Finite Groups. World Scientific, Singapore (1994)CrossRefMATHGoogle Scholar
  2. 2.
    Huppert, B.: Endliche Gruppen I, Grund. Math. Wiss., vol. 134. Springer Verlag, Berlin, Heidelberg, New York (1967)CrossRefGoogle Scholar
  3. 3.
    Ballester-Bolinches, A., Esteban-Romero, R., Asaad, M.: Products of finite groups, de Gruyter Expositions in Mathematics, vol. 53. Walter de Gruyter, Berlin (2010). doi:10.1515/9783110220612
  4. 4.
    Kurdachenko, L.A., Otal, J.: On the existence of normal complement to the Sylow subgroups of some infinite groups. Carpathian J. Math. 29(2), 195–200 (2013)MATHMathSciNetGoogle Scholar
  5. 5.
    Weigel, T.S.: Finite \(p\)-groups which determine \(p\)-nilpotency locally. Hokkaido Math. J. 41, 11–29 (2012)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Ballester-Bolinches, A., Esteban-Romero, R., Ezquerro, L.M.: On a \(p\)-Schur–Frattini extension of a finite group. PreprintGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • A. Ballester-Bolinches
    • 1
  • S. Camp-Mora
    • 1
    • 2
  • F. Spagnuolo
    • 1
  1. 1.Departament d’ÀlgebraUniversitat de ValènciaValenciaSpain
  2. 2.Departament de Matemàtica AplicadaUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations