Monatshefte für Mathematik

, Volume 174, Issue 1, pp 41–75 | Cite as

End point estimates for Radon transform of radial functions on non-Euclidean spaces

Article
  • 134 Downloads

Abstract

We prove end point estimate for Radon transform of radial functions on affine Grasamannian and real hyperbolic space. We also discuss analogs of these results on the sphere.

Keywords

Radon transform \(d\hbox {-}\)Plane transform Hyperbolic space Sphere Affine Grassmann 

Mathematics Subject Classification (2000)

Primary 44A12 42B20 Secondary 31B99 

References

  1. 1.
    Anker, J.P.: Sharp estimates for some functions of the laplacian on noncompact symmetric spaces. Duke Math. J. 65(2), 257–297 (1992)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Anker, J.P.: The spherical fourier transform of rapidly decreasing functions. a simple proof of a characterization due to harish-chandra, helgason, trombi, and varadarajan. J. Funct. Anal. 96(2), 331–349 (1991)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Berenstein, C.A., Rubin, B.: Radon transform of \(l^p\)-functions on the lobachevsky space and hyperbolic wavelet transforms. Forum Math. 5(11), 567–590 (1999)MathSciNetGoogle Scholar
  4. 4.
    Berenstein, C.A., Rubin, B.: Totally Geodesic Radon Transform of \(L^p\)-Functions on Real Hyperbolic Space. Fourier Analysis and Convexity, pp. 37–58. Applied Numerical Harmonical Analysis, Birkhuser Boston, Boston, MA (2004)Google Scholar
  5. 5.
    Bray, W. O.: Aspects of harmonic analysis on real hyperbolic space. In: Fourier analysis (Orono, ME, 1992). Lecture Notes in Pure and Applied Mathematics, vol. 157, pp. 77–102. Dekker, New York (1994)Google Scholar
  6. 6.
    Cowling, M., Meda, S., Setti, A.G.: An overview of harmonic analysis on the group of isometries of a homogeneous tree. Exposition. Math. 16(5), 385–423 (1998)MATHMathSciNetGoogle Scholar
  7. 7.
    Duoandikoetxea, J., Naibo, V., Oruetxebarria, O.: \(k\)-plane transforms and related operators on radial functions. Michigan Math. J. 49, 265–276 (2001)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Grafakos, L.: Classical and Modern Fourier Analysis. Pearson Education, Inc., NJ (2004)MATHGoogle Scholar
  9. 9.
    Gonzalez, F.B.: Radon transform on grassmann manifolds. J. Funct. Anal. 71, 339–362 (1987)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Gonzalez, F.B., Kakehi, T.: Pfaffian systems and radon transforms on affine grassmann manifolds. Math. Ann. 326(2), 237–273 (2003)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Gonzalez, F.B., Kakehi, T.: Dual radon transforms on affine grassmann manifolds. Trans. Am. Math. Soc. 356(10), 4161–4180 (2004)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Helgason, S.: The radon transform on euclidean spaces, compact two-point homogeneous spaces and grassmann manifolds. Acta Math. 113, 153–180 (1965)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Helgason, S.: The Radon transform, 2nd edn. Progress in Mathematics, vol. 5. Birkhuser Boston Inc., Boston, MA (1999)Google Scholar
  14. 14.
    Helgason, S.: Fundamental solutions of invariant differential operators on symmetric spaces. Am. J. Math 86, 565–601 (1964)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Ionescu, A.D.: An endpoint estimate for the kunze-stein phenomenon and related maximal operators. Ann. Math. (2) 152(1), 259–275 (2000)CrossRefMATHGoogle Scholar
  16. 16.
    Ishikawa, S.: The range characterizations of the totally geodesic radon transform on the real hyperbolic space. Duke Math. J. 90(1), 149–203 (1997)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Kumar, A., Ray, S.K.: Weighted estimates of d-plane transform for radial functions on euclidean spaces. Israel J. Math. 188, 25–56 (2012)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Markoe, A.: Analytic tomography. Encyclopedia of mathematics and its applications. Cambridge University Press, Cambridge (2006)Google Scholar
  19. 19.
    Oberlin, D.M., Stein, E.M.: Mapping properties of the radon transform. Indiana Univ. Math. J. 31, 641–650 (1982)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Ratcliffe, J.G.: Foundations of Hyperbolic Manifolds, 2nd edn. Graduate Texts in Mathematics, vol. 149. Springer, New York (2006)Google Scholar
  21. 21.
    Ray, S.K., Sarkar, R.P.: Fourier and radon transform on harmonic \(na\) groups. Trans. Am. Math. Soc. 361(8), 4269–4297 (2009)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Rubin, B.: Inversion formulas for the spherical radon transform and the generalized cosine transform. Adv. Appl. Math. 29(3), 471–497 (2002)CrossRefMATHGoogle Scholar
  23. 23.
    Rubin, B.: Radon, cosine and sine transforms on real hyperbolic space. Adv. Math. 170(2), 206–223 (2002)MATHMathSciNetGoogle Scholar
  24. 24.
    Rubin, B.: Radon transforms on affine grassmannians. Trans. Am. Math. Soc. 356(12), 5045–5070 (2004)CrossRefMATHGoogle Scholar
  25. 25.
    Solmon, D.C.: Solmon, a note on \(k\)-plane integral transforms. J. Math. Anal. Appl. 71, 351–358 (1979)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Strichartz, R.S.: Harmonic analysis on grassmannian bundles. Trans. Am. Math. Soc. 296, 387–409 (1986)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Strichartz, R.S.: \(l^p\) estimates for radon transforms in euclidean and non-euclidean spaces. Duke Math. J. 48(4), 699–727 (1981)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Stein, E.M., Weiss, G.: Introduction to Fourier analysis on Euclidean spaces. Princeton Mathematical Series, vol. 32. Princeton University Press, Princeton, NJ (1971)Google Scholar
  29. 29.
    Vilenkin, N.Ja., Klimyk, A.U.: Representation of Lie groups and special functions, vol. 2. Class I representations, special functions, and integral transforms. Translated from the Russian by V.A. Groza and A. A. Groza. Mathematics and its Applications (Soviet Series), 74. Kluwer Academic Publishers Group, Dordrecht (1993)Google Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.Department of mathematicsIndian Institute of ScienceBangalore India
  2. 2.Discipline of MathematicsIndian Institute of Technology IndoreIndoreIndia
  3. 3.Stat-Math UnitIndian Statistical InstituteKolkata India

Personalised recommendations